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ABSTRACT

Resource Management in Metacomputing Environments

Warren Smith

Metacomputing systems consist of various types of geographically distributed
resources that users group into virtual computers, called metacomputers, to execute
applications. In this work, we develop and evaluate general metacomputing services
for resource selection and scheduling. To select which resources to use, users require
information about resource performance, availability, and so on. We describe an
information service that provides a common interface to such information.

One difficulty is that supercomputer schedulers do not typically provide infor-
mation on when applications will execute. Therefore, we investigate techniques to
predict these start times. We propose and evaluate a general technique for main-
taining a historical database and using this database to predict characteristics of
data points. We predict the execution time characteristic of applications and the
wait time characteristic of scheduler states. We find that our run-time prediction
errors are between 29 and 54 percent of the mean run times of the four workloads
we use for evaluation and are significantly smaller than the errors of other run-time
prediction techniques. If we use run-time predictions to predict wait times, our
prediction error is 30 to 59 percent of the mean wait times. The disadvantage of
this approach is that it requires detailed knowledge of the scheduling algorithm. If
we use scheduler state as data points and construct wait-time predictions based on

this, our prediction error is 49 to 94 percent of the mean wait times.
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In addition to selecting which resources to use, users must be able to schedule
access to the resources. To assist in this, we present a common interface to super-
computer scheduling systems. Further, many metacomputing applications require
simultaneous access to resources and current scheduling systems do not provide this
support when resources are controlled by more than one scheduler. To address this
problem, we propose and evaluate techniques for reserving resources on supercom-
puters. We find that there are many different techniques to perform reservations
with a range of effects on the wait times of queued jobs and the difference between

when reservations are made and when they are initially requested.
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Chapter 1

Introduction

Recent advances in wide-area networking make it feasible to create applications that
execute on virtual computers constructed from geographically distributed resources.
An application may require a virtual computer consisting of several supercomputers,
network connectivity between the computer systems, access to remote data sets, and
connectivity to specialized resources such as scientific instruments and visualization
devices. We call such virtual computers metacomputers and the applications that
use them metacomputing applications. A set of software services such as authenti-
cation, communication, information retrieval, resource management, and access to
remote data, are required to make efficient use of these resources. In this work,
we develop and evaluate general metacomputing services for resource selection and
scheduling.

To select resources for use by an application, a user requires information about re-
source configuration, performance, availability, and so on. In this work, we present

an information service that provides a common interface to such information. A



good solution to this problem combines a resource representation that is precise
enough to describe a wide range of resource characteristics, a query language that
can express a wide range of resource requirements, and a search strategy that can
match requirements with resources efficiently. Diverse resources such as worksta-
tions, SMPs, MPPs, networks, and scientific instruments must be represented.
One difficulty is that supercomputer schedulers do not typically provide infor-
mation on when applications will execute. Therefore, we investigate techniques to
predict these start times. We propose and evaluate a general technique for main-
taining a historical database and using this database to predict characteristics of
data points. We use this technique for predicting application execution times and
for predicting queue wait times. When we predict application run times, the appli-
cations are described by the characteristics that a user provides when they submit
an application to a parallel scheduler. We predict application run times using the
run times of “similar” applications that have executed in the past. Initially, we do
not know which characteristics to use to define which applications are similar and
we do not know which of several statistical techniques to use to produce a prediction
from similar applications. We search for the characteristics to use to define similar
and how to produce a prediction using both greedy and genetic algorithm searches.
We use two techniques to predict queue wait times. The first technique uses run-
time predictions and performs scheduling simulations of all the running and queued
applications to predict when they will start executing. There are two disadvantages
to this technique. First, exact knowledge of the scheduling algorithm is required and
this knowledge can be difficult to determine about commercial scheduling systems.
Second, this technique does not consider any applications that have not yet been

submitted and with some scheduling algorithms, these applications can affect the



start times of applications that are already in queues. The second technique directly
uses our prediction technique based on historical data. This technique characterizes
the state of a scheduler and the application whose wait time is being predicted,
finds similar scheduler/application states that have existed in the past, and then
uses historical information of wait times in these similar states to produce a wait-
time prediction. As previously stated, these wait-time predictions are useful when
selecting which supercomputer to execute an application on. Further, if these pre-
dictions are accurate enough, they may also allow users to submit applications to
several supercomputers so that they execute simultaneously and cooperate to solve
a problem.

In addition to selecting which resources to use, users must be able to schedule
access to the resources. To assist in this, we helped to define a common interface to
supercomputer scheduling systems. This interface allows a user to start, monitor,
and terminate applications and can be layered atop various scheduling systems or
run on computer systems without schedulers. Further, many metacomputing ap-
plications require simultaneous access to resources and current scheduling systems
do not provide this support when resources are controlled by more than one sched-
uler. To address this problem, we propose and evaluate techniques for reserving
resources on supercomputers. We examine several different techniques for this and
evaluate their performance based on changes in mean queue wait times and how
near reservations are made to when the users initially request them.

As a prelude to our work on techniques for reserving supercomputing resources,
we improve the performance of scheduling algorithms by using more accurate run-
time predictions. Several scheduling algorithms use run-time predictions and typ-

ically use the maximum run-times that are specified by the users. We investigate



the effects on scheduling performance of using other run-time predictions besides

maximum run times.

1.1 Contributions

This thesis provides the following contributions in the area of resource selection and

scheduling in metacomputing environments:

e The design of an information service that allows users to locate resources

suitable for their applications.
e The definition of a general prediction technique.

e An evaluation of our prediction technique when applied to predictions of the

execution times of applications submitted to three different parallel computers.

e Two techniques for predicting when supercomputer schedulers will assign re-

sources to applications.
e The design of a common interface to scheduling systems.

e An analysis of improvements to scheduling performance when more accurate

run-time predictions are used.

o A definition and evaluation of a range of techniques for supporting advanced

reservations in scheduling systems.



1.2 Outline

The next chapter describes metacomputing software with an emphasis on the Globus
project, which uses some of the work developed here. Chapter 3 describes our general
prediction technique, describes how we use this technique to predict application run
times, presents performace data, and compares the performance of our technique to
other run-time prediction techniques. Chapter 4 describes the two queue wait-time
prediction techniques that we use to predict when schedulers will assign resources to
applications and presents their performance. Chapter 5 evaluates the performance
of several scheduling algorithms when our run-time predictions are used instead of
other run-time predictions. This work is the prelude to the work in Chapter 6 where
we modify the scheduling algorithms presented in Chapter 5 to support advance
reservations of resources and discuss the performance of several different ways to
support reservations. Chapter 7 describes the information service that we helped to
design and Chapter 8 provides details of the common interface to scheduling systems

that we helped to design. Finally, Chapter 9 presents our conclusions.



Chapter 2

Metacomputing

A major area of research activity in high-performance computing is to provide soft-
ware so that distributed computers, databases, instruments, visualization devices,
and other resources can be used together to solve scientific problems. This allows
scientists to solve new and more complex problems than they could previously. Some

application classes that are supported are:

1. Desktop supercomputing. These applications begin to execute on a user’s desk-
top computer system and then acquire remote high-performance resources
when needed. This gives the user the illusion that their desktop system is a

supercomputer.

2. Smart Instruments. These applications connect instruments to computing
resources and allow users to control the instruments and analyze their results

on-line using the compute resources [58, 43].



3. Collaborative environments. These applications couple multiple virtual envi-
ronments so that users in different locations can interact with each other and

with supercomputer simulations [58].

4. Distributed supercomputing. These applications use multiple computers to
simulate problems that are too large for a single computer or that can benefit

from executing on different computer architectures [3, 9, 8].

In addition to the resources needed by the application classes described above,
software is needed to manage the resources and allow applications to use them to
solve their problems. These resources and the software to access them are called
metacomputers [11] or computational grids [30]. Services for security, communi-
cation, resource management, information, access to remote data, and others are
required and our provided by several software packages. The next section describes
one such package, Globus, which uses some of the work presented here and the
related work section will describe other sets of software for metacomputing.

Figure 2.1 shows an example of a user forming a metacomputer for use by an
application. It illustrates several requirements that motivate our work. First, the
user communicates with an information service to find suitable resources for the ap-
plication. The user could have requirements for the architecture and/or operating
system of the machine, speed of the machine, free disk space on the machine, and
so on. Then, the user reduces the list of suitable supercomputers using wait-time
predictions for various numbers of nodes and execution times. Further, if the sched-
ulers support advanced reservation of resources for applications, the user can ask
when various numbers of nodes can be reserved for sufficient amounts of time. In

the example, we assume that the user determines that it would be better to execute
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Figure 2.1: An example of forming a metacomputer.

the application using resources from two supercomputers. The user then uses a
resource management interface to submit a reservation (or submit to the queue if
they choose not to reserve resources) for the application to both scheduling systems
and to monitor the application as it executes, even if the scheduling systems differ.

This example illustrates several software components that are very useful when
forming metacomputers. An information service is helpful for finding appropriate re-
sources to use and can serve as a virtually centralized information repository. Infor-
mation on how long applications will wait before receiving resources from schedulers
is useful for selecting which computer systems to use for an application. Advanced
reservation of resources allows users to simultaneously allocate resources from more
than one supercomputer for an application. Finally, a common interface to schedul-
ing systems makes it much easier for a user to submit and monitor applications to

many different scheduling systems.
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Figure 2.2: The Globus layered software architecture. The components with dashed
borders are existing software. The components with solid borders are provided by
Globus. The components with dotted lines are constructed by various groups.

The previous example concentrated on the metacomputing software components
that we are concerned with in this work. There are many other components that
assist in forming metacomputers. In the next section, we describe the Globus toolkit
that provides software for using metacomputing systems and uses the information

service and scheduling service described here. Section 2.2 describes other software

to support metacomputing applications.

2.1 Globus Overview

Globus [29] consists of a layered software architecture that provides middleware
software for metacomputing. This architecture is shown in Figure 2.2 and consists

of the following components:

o Nexus. Nexus [27] is a library that provides threading, synchronization opera-
tions, and asynchronous remote procedure calls. A significant feature of Nexus

is that it can be layered atop many different communication protocols (TCP
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and shared memory are two examples). Nexus will select the best protocol to
use to communicate between any pair of nodes [23]. For example, if an ap-
plication uses two shared memory multiprocessors, RPCs between processes
on the same system will be accomplished using shared memory, but RPCs

between processes on different systems will be accomplished using TCP.

GSI. The Globus Security Infrastructure (GSI) [26] provides authentication
services using the Generic Security Services API (GSS-API) implemented over
the Secure Socket Layer (SSL) public key infrastructure. The GSI also sup-
ports conversion between SSL certificates to Kerberos tickets. This allows

authentication to Kerberos domains and services such as AFS.

MDS. The Metacomputing Directory Service (MDS) [22] is an information
service that we helped to design which provides information about computers,
networks, instruments, applications, people, etc. to Globus users. The MDS
is accessed using the Lightweight Directory Access Protocol (LDAP) [40], a

widely-adopted protocol for accessing directory services.

GRAM. The Globus Resource Allocation Manager (GRAM) [13] provides a
common interface to local schedulers. We helped to define this interface which
supports submission of applications, updates of the execution state of appli-
cations, and cancelling of applications. The GRAM consists of servers that
execute on the computer systems providing resources and clients that a user

uses to securely perform GRAM operations on servers.

DUROC. The Dynamically Updatable Reconfigurable Online Coallocator (D-
UROC) [13] is used to execute applications on resources controlled by more

than one GRAM. The DUROC allows a user to submit several GRAM jobs,
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monitor their states, submit further GRAM jobs or remove already submitted
GRAM jobs until a satisfactory resource pool is allocated. Then, the user
releases a barrier which allows the application to begin executing and the user
can monitor the states of the individual GRAM jobs and cancel the DUROC
job. In addition to these control functions, the DUROC provides a runtime
library that is compiled with the user’s application. The user’s application

also must contain the barrier operation before it begins to compute.

MPICH-G. MPICH is a portable implementation of the MPI [37] message
passing protocol. This implementation contains low-level abstract devices that
are used for communication, allowing MPICH to be implemented over many
different communication protocols (for example, TCP, shared memory, and
MPL). MPICH-G [24] is MPICH using the Globus device. The Globus device
uses Nexus for communication, linking with the Globus libraries with mpicc,

and providing support for using Globus mechanisms for job startup and cancel

(GRAM and DUROC) inside of mpirun.

(GASS. The Globus Access to Secondary Storage (GASS) [5] provides mecha-
nisms for transferring files to where they are needed. There are several differ-
ent parts of GASS. First there is a GASS server that executes at a site and
provides access to a user’s files at that site. This server (or a FTP or HTTP
server) is needed at remote sites to access files. There is a C API that provides
open and close operations. These operations automatically move a remote file
to a local cache when an open is performed and automatically moves the file
back to the remote site (if necessary) when the file is closed. There is also a

C API and programs to move files to and from remote systems.
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o Resource Brokers. Resource brokers are higher-level tools that use the Globus
middleware services. These brokers can be customized for different applica-
tions or types of applications. Globus is designed to support a wide variety of
resource brokers but there are some local services that are not supported that

make this difficult. These missing services motivate the rest of this work.

2.2 Related Work

There are other groups that provide metacomputing software and in this section,
we describe many of them and compare them to the Globus toolkit. There are
several systems that have been designed for metacomputing (Legin and Prospero)
and several that have been extended to support metacomputing.

Legion [34, 36, 35] is a system that provides object-oriented distributed super-
computing. Legion supports object-oriented parallel programming with the Mentat
programming language, an extension of C++, where objects may have their own
address space. These objects can then be placed on remote systems with method
calls to the objects transformed into messages between computer systems. Legion
provides an object management system (OMS) that places objects on suitable com-
putational nodes and a common file system, in the form of a persistent object space,
where files are objects that live on disk.

The OMS places objects on nodes using the required architectures for the objects
and information about the computer systems that are part of Legion. Candidate
computer systems are determined by their architecture, FLOPS rating, MIPS rating,
number of processors, load, number of objects, and cluster. A cluster is a set of

systems that are close together, for example on the same subnet. The OMS does



13

not consider computer systems with too high of a load or too many objects residing
there. The OMS will first try to place a new object in the same cluster as where
it was created. One of the candidate computer systems is chosen using either a
random or round-robin method. The OMS will try other clusters until a suitable
system is found or until a maximum number of attempts are made.

Legion now provides many of the same services that Globus does. One main
difference is that Legion is target to an object model of distributed computation,
while Globus is not. Another main difference is in design philosophy. Legion is an
integrated set of software while Globus is a set of software components that can
be used together or separately. Another difference is that Legion has just added
support for interfacing to local scheduling systems. Because this support is new,
only a few scheduling systems are supported, and only one queue is used for each
scheduler.

The Prospero Resource Manager (PRM) [50] is a tool for allocating pro-
cessing resources to jobs and managing processing resources within each job. PRM
has three main components: the system manager, the job manager, and the node
manager. The system manager is responsible for a collection of nodes and maintains
information about each node such as the architecture, the load, if the node is avail-
able and what job it is assigned to. The system manager responds to status updates
from node managers and node requests from job managers. When a system manager
receives a node request, it determines if the nodes are available and if so, allocates
them to the job manager. If the nodes are not available, the system manager can
allocate a subset of the nodes or reserve the nodes for when they become available.
The node manager knows the architecture of the node on which it is executing and

the load. It keeps its system manager informed of changes in load information and
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the tasks that it is executing.

The job manager acts as an agent for a job and contacts system managers to
find nodes for the job to execute on. The job manager locates system managers
using a list provided by the user or the Prospero Directory Service (described be-
low). The request language supported by the job manager allows the user to specify
executables, arguments, number of nodes on which each executable should run,
and the architectures on which the executable is available, among others. The job
manager can locate system managers that have nodes of the desired architecture
using a directory service and then sends requests to the system managers. If a job
manager receives resources from a system manager, it assigns tasks of the job to
nodes and contacts node managers to start the tasks. If a job manager does not
receive resources from a system manager, it contacts other system managers. After
the job starts, the job manager monitors the execution of the job, requesting ad-
ditional nodes if necessary. Different job managers can be used depending on user
requirements. For instance, a job manager that handles debugging tasks could be
used.

Globus differs from the Prospero Resource Manager in several ways. First,
Globus considers network and data resources along with compute resources when
selecting resources for an application. Second, Globus provides more sophisticated
mechanisms for using resources from multiple local schedulers (PRM system man-
agers) in a single application. Third, Globus does not require that local schedulers
be replaced as PRM does. Fourth, PRM does not coordinate the use of resources
into the future, our resource managers perform this task. This may result in less
efficient use of resources.

The Prospero Directory Service (Prospero) [48, 49] is a system to organize
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information provided by many different sources such as Gopher, FTP, file systems,
the World Wide Web, and others. Prospero is based on the Virtual System Model
that organizes information as a global file system and allows customized views of
the information. Organizations will have views of information that are organized in
the most useful way to them: different organizations can have different views of the
same information. Further, users have their own views of information so that they
can easily locate information most useful to them.

Prospero does not provide mechanisms for searching for information. It does
aid search tools by organizing information so that the scope of searches can be
smaller. The Prospero Resource Manager can use the Directory Service to find
system managers. This is accomplished by organizing a hierarchy directories where
each directory corresponds to a set of characteristics of computational resources. The
names of system managers can then be placed in this hierarchy wherever they provide
resources of the type each directory corresponds to. PRM only uses the architecture
and load of computational resources to characterize them so the hierarchy is limited.

In Globus, there are many more resource characteristics so the above method for
locating resource providers is impractical. The MDS organizes information about
more types of resources than Prospero and contains mechanisms to perform efficient
searches on these resources. This is a necessary function when locating resources
for an application in a large wide-area environment.

Condor [46, 7, 18, 45] is a distributed batch system that was designed to serve
users who need more computational power than they have on their desk by allowing
these users to run serial and parallel jobs on unutilized workstations. Condor consists
of a central manager and several daemons running on all participating workstations

(the workstation pool). The central manager keeps track of which machines are idle
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and which machines have jobs they wish to run. When there are idle machines and
machines with jobs to run, the central manager will pick machine a with jobs to run
and an machine b which is idle. The central manager will inform machine a that it
can run a job on machine b and inform machine b that machine a can run a job on
it. Machine a will then start a job on machine b.

Condor determines if a machine is idle using the load of the machine and how
long the keyboard and mouse have been unused. When a machine becomes idle,
the central manager picks a machine to run a job on it. Which machine is picked is
determined by the priority of each machine, how many jobs each machine wants to
run, and how many jobs each machine is running. After a machine is picked, the job
the machine sends off to run is determined using the priorities of the waiting jobs,
when the job was submitted, and if the job has already completed some execution.

A recent addition to Condor is the ability to run jobs from one pool on worksta-
tions in another pool, if the pools trust each other. If pool d accepts jobs from pool
¢, then an idle machine in pool d advertises itself as an idle machine to pool ¢. If
the central manager in pool ¢ may then choose the machine from pool d on which
to run jobs. The idle machine advertised from pool d is periodically changed.

Condor is also somewhat different from Globus. For example, Condor provides
schedulers for each cluster of systems, while Globus does not provide a resource
scheduler. Condor also does not interface to local scheduling systems, however,
there is a GRAM that interfaces to Condor pools and work is ongoing on allowing
Condor to send jobs to other systems by using Globus.

The Load Sharing Facility (LSF) [51, 53, 52] is a package sold by Platform
Computing that was originally based on Condor. LSF consists of a central scheduler

and daemons running on computational resources in the resource pool. LSF provides
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mechanisms for several tasks such as a parallel make and a parallel shell. The core
of the system schedules batch jobs to resources in the pool. Administrators can
configure several queues to submit jobs to. The queues have properties such as
when they are active, what resources they consider as candidates, the priority of the
queue, the scheduling algorithm for jobs in the queue, and many others.

LSF has recently added a multi-cluster tool that allows a request submitted to
one pool of resources to be executed on resources in another pool, similar to the
Condor approach described above. This method does not allow a single application
to use resources from multiple pools simultaneously. LSF differs from Globus in the
same ways that Condor does.

The AppLeS (Application Level Scheduling) [4, 54] system acts as an agent for
users. An AppLeS scheduler contains a model of how an application will perform
on various sets of resources and it schedules the tasks that make up the application
to compute resources using the performance of the application on the compute
resources and considering the current and predicted future network performance
between the resources. The AppLeS scheduler periodically reevaluates the resources
the application is using and not using and may instruct the application to use
different resources or use its current resources in a different way. AppLeS schedulers
interact with resource management systems to find information about resources and
acquire desired resources.

Globus differs in that it provides a resource management system that manages
many resources and users but does not perform any application analysis. AppLeS

will use Globus as one of the resource management systems that it interacts with.



Chapter 3

Run-Time Predictions

Predictions of application run time can be used to improve the performance of
scheduling algorithms [31] and to predict how long a request at the head of a queue
will wait for resources [16]. In later chapters, we show that run-time predictions
can also be useful in high-performance distributed computing environments in two
different ways. First, they are useful as a means of estimating queue times and
hence guiding selections from among various resources. Second, they are useful
when attempting to gain simultaneous access to resources from multiple scheduling
systems [13].

The problem of predicting the run times of applications has been examined at
many different levels. Several researchers [20, 38] have examined the execution char-
acteristics of applications on parallel machines and analyzed this data for patterns.
Others [54, 12] have performed detailed analysis of the execution of parallel pro-
grams for predicting application run times on different sets of compute and network

resources. The work on run-time prediction that is most similar to that reported
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here is performed by Downey [16] and Gibbons [31]. Both adopt the approach of
making predictions for future applications by applying a “template” of application
characteristics to identify “similar” applications that have executed in the past. Un-
fortunately, their techniques are not very accurate, with errors frequently exceeding
execution times. The difference between these techniques and ours is that Downey
and Gibbons both arbitrarily selected a set of templates to use, while we use search
techniques to find the best set of templates.

Our approach to prediction is a general one and can be used to estimate one or
more unknown characteristics of data points that are described by a set of charac-
teristics. While this chapter presents our prediction technique in terms of predicting
application execution times, in Chapter 4 we use this same approach to predict how
long applications will wait until they receive resources. In that case, the data points
are the characteristics of the scheduler state, the machine, and the application that
is having it’s wait time predicted. The characteristic being predicted is the queue
wait time.

We believe that the key to making more accurate predictions is to be more
careful about which past data points are used to make predictions. Accordingly,
we apply greedy and genetic algorithm search techniques to identify templates that
perform well when partitioning data points into categories within which data points
are judged to be similar. We also examine and evaluate a number of variants of
our basic prediction strategy. We examine whether it is useful to use regression
techniques to exploit node count information when applications in a category have
different node counts. We also examine the effect of varying the amount of past
information used to make predictions, and we consider the impact of using user-

supplied maximum run times on prediction accuracy.
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We evaluate our techniques using four workloads recorded from supercomputer
centers. This study shows that the use of search techniques makes a significant
improvement in prediction accuracy: our prediction algorithm achieves prediction
errors that are 21 to 61 percent lower than those achieved by Gibbons, depending
on the workload, and 41 to 64 percent lower than those achieved by Downey. The
templates found by the genetic algorithm search outperform the templates found by
the greedy search.

The rest of this chapter is structured as follows. Section 3.1 describes how
we define application similarity, perform predictions, and use search techniques to
identify good templates. Section 3.2 describes the results when our algorithm is
applied to supercomputer workloads. Section 3.3 compares our techniques and re-
sults with those of other researchers. Section 3.5 presents a summary of our results.

Appendix A provides details of the statistical methods used in our work.

3.1 Prediction Techniques

Both intuition and previous work [16, 20, 31] indicate that “similar” applications are
more likely to have similar run times than applications that have nothing in common.
This observation is the basis for our approach to the prediction problem, which is
to derive run-time predictions from historical information of previous similar runs.

To translate this general approach into a specific prediction method, we need to

answer two questions:

1. How do we define “similar”? Jobs may be judged similar because they are
submitted by the same user, at the same time, on the same computer, with

the same arguments, on the same number of nodes, and so on. We require
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techniques for answering the question: Are these two jobs similar?

2. How do we generale predictions? A definition of similarity allows us to parti-
tion a set of previously executed jobs into buckets or categories within which
all are similar. We can then generate predictions by, for example, computing

a simple mean of the run times in a category.

We structure the description of our approach in terms of these two issues.

3.1.1 Defining Similarity

In previous work, Downey [16] and Gibbons [31] demonstrated the value of us-
ing historical run-time information to identify “similar” jobs to predict run times
for the purpose of improving scheduling performance and predicting wait times in
queues. However, both Downey and Gibbons restricted themselves to relatively
simple definitions of similarity. A major contribution of this work is to show that
more sophisticated definitions of similarity can lead to significant improvements in
prediction accuracy.

A difficulty in developing prediction techniques based on similarity is that two
jobs can be compared in many ways. For example, we can compare the application
name, submitting user name, executable arguments, submission time, and number
of nodes requested. We can conceivably also consider more esoteric parameters
such as home directory, files staged, executable size, and account to which the run is
charged. We are restricted to those values recorded in workload traces obtained from
various supercomputer centers. However, because the techniques that we propose
are based on the automatic discovery of efficient similarity criteria, we believe that

they will apply even if quite different information is available.
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The workload traces that we consider are described in Table 3.1; they originate
from Argonne National Laboratory (ANL), the Cornell Theory Center (CTC), and
the San Diego Supercomputer Center (SDSC). Table 3.2 summarizes the information
provided in these traces. Text in a field indicates that a particular trace contains
the information in question; in the case of “Type,” “Queue,” or “Class” the text
specifies the categories in question. The characteristics described in rows 1-9 are
physical characteristics of the job itself. Characteristic 10, “maximum run time,”
is information provided by the user and is used by the ANL and CTC schedulers
to improve scheduling performance. Rows 11 and 12 are temporal information,
which we have not used in our work to date; we hope to evaluate the utility of
this information in future work. Characteristic 13 is the run time that we seek to
predict.

The general approach to defining similarity taken by ourselves, Downey, and
Gibbons is to use characteristics such as those presented in Table 3.2 to define tem-
plates that identify a set of categories to which jobs can be assigned. For example,
the template (q,u) specifies that jobs are to be partitioned by queue and user;
on the SDSC Paragon, this template generates categories such as (q16m,wsmith),
(9641,wsmith), and (q16m,foster).

We find that using discrete characteristics 1-8 in the manner just described
works reasonably well. On the other hand, the number of nodes is an essentially
continuous parameter, and so we prefer to introduce an additional parameter into
our templates, namely, a “node range size” that defines what ranges of requested

number of nodes are used to decide whether applications are similar. For example,

IBecause of an error when the trace was recorded, the ANL trace does not include one-third
of the requests actually made to the system. To compensate, we reduced the number of nodes on
the machine from 120 to 80 when performing simulations.
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Table 3.2: Characteristics recorded in workloads.
abbreviations used in subsequent discussion.
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The column “Abbr” indicates

Abbr Characteristic Argonne Cornell SDSC
batch, serial,
1 t Type interactive parallel,
pvm3
2 q Queue 29 to
35 queues
3 c Class DSI/PIOFS
4 u User Y Y Y
5 S Loadleveler script Y
6 e Executable Y
7 a Arguments Y
8 na Network adaptor Y
9 n Number of nodes Y Y Y
10 Maximum run time Y Y
11 Submission time Y Y Y
12 Start time Y Y Y
13 Run time Y Y Y
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the template (u, n=4) specifies a node range size of 4 and generates categories
(wsmith, 1-4 nodes) and (wsmith, 5-8 nodes).

Once a set of templates has been defined (see Section 3.1.4), we can categorize a
set of jobs (e.g., the workloads of Table 3.1) by assigning each job to those categories
that match its characteristics. Categories need not be disjoint, and hence the same
job can occur in several categories. If two jobs fall into the same category, they are

judged similar; those that do not coincide in any category are judged dissimilar.

3.1.2 Generating Predictions

We now consider the question of how we generate run-time predictions. The input to
this process is a set of templates T and a workload W for which run-time predictions
are required. In addition to the characteristics described in the preceding section, a
maximum history, type of data to store, and prediction type are also defined for each
template. The maximum history indicates the maximum number of data points to
store in each category generated from a template. The type of data is either an actual
run time, denoted by act, or a relative run time, denoted by rel. A relative run time
incorporates information about user-supplied run time estimates by storing the ratio
of the actual run time to the user-supplied estimate (as described in Section 3.1.3).
The prediction type determines how a run-time prediction is made from the data
in each category generated from a template. We consider four prediction types: a
mean, denoted by mean, a linear regression (1in), an inverse regression (inv), or a
logarithmic regression (log).

The output from this process is a set of run-time predictions and associated con-
fidence intervals. (As discussed in the appendix, a confidence interval is an interval

centered on the run-time prediction within which the actual run time is expected
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to appear some specified percentage of the time.) The basic algorithm is described
below and comprises three phases: initialization, prediction, and incorporation of

historical information.

1. Define T', the set of templates to be used, and initialize C', the (initially empty)

set of categories.
2. At the time each application a begins to execute:
(a) Apply the templates in 7" to the characteristics of a to identify the cate-

gories (', into which the application may fall.

(b) Eliminate from C, all categories that are not in C' or that cannot provide
a valid prediction (i.e., do not have enough data points as described in

the appendix).

¢) For each category remaining in (,, compute a run-time estimate and a
gory g ) P

confidence interval for the estimate.
(d) If C, is not empty, select the estimate with the smallest confidence inter-

val as the run-time prediction for the application.

3. At the time each application a completes execution:

(a) Identify the set C, of categories into which the application falls. These

categories may or may not exist in C.
(b) For each category ¢; € C,
i. If ¢; € C, create ¢; in C.
ii. If |¢;| = maximum history(¢;), remove the oldest point in ¢;.

1i. Insert a into ¢;.
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Note that steps 2 and 3 operate asynchronously, since historical information for
a job cannot be incorporated until the job finishes. Hence, our algorithm suffers
from an initial ramp-up phase during which there is insufficient information in C
to make predictions. This deficiency could be corrected by using a training set to
initialize C.

We now discuss how a prediction is generated from the contents of a category
in step 2(c) of our algorithm. We consider two techniques in this chapter. The
first simply computes the mean of the run times contained in the category. The
second attempts to exploit the additional information provided by the node counts
associated with previous run times by performing regressions to compute coefficients
a and b for the equations R = aN + b, R = % + b, and R = alog N + b for linear,
inverse and logarithmic regressions, respectively. N is the number of nodes requested
by the jobs, and R is the run time. The techniques used to compute confidence
intervals for these predictors, are described in the appendix.

The use of maximum histories, referred to as mh, in step 3(b) of our algorithm
allows us to control the amount of historical information used when making pre-
dictions and the amount of storage space needed to store historical information. A
small maximum history means that less historical information is stored, and hence

only more recent events are used to make predictions.

3.1.3 User Guidance

Another approach to obtaining accurate run-time predictions is to ask users to
estimate the run time of an application at the time of submission. This approach
may be viewed as complementary to the prediction techniques discussed previously,

since historical information presumably can be used to evaluate the accuracy of user
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predictions.

Unfortunately, none of the systems for which we have workload traces ask users
to explicitly provide information about expected run times. However, all of the
workloads provide implicit user estimates. The ANL and CTC workloads include
user-supplied maximum run times. This information is interesting because users
have some incentive to provide accurate estimates. The ANL and CTC systems
both kill a job after its maximum run time has elapsed, so users have incentive
not to underestimate this value. Both systems also use the maximum run time to
determine when a job can be fit into a free slot, so users also have incentive not to
overestimate this value.

Users also provide implicit estimates of run times in the SDSC workloads. The
scheduler for the SDSC Paragon has many different queues with different priorities
and different limits on application resource use. When users pick a queue to submit
a request to, they implicitly provide a prediction of the resource use of their ap-
plication. Queues that have lower resource limits tend to have higher priority, and
applications in these queues tend to begin executing quickly; users are motivated to
submit to queues with low resource limits. Also, the scheduler will kill applications
that go over their resource limits, so users are motivated not to submit to queues
with resource limits that are too low.

A simple approach to exploiting user guidance is to base predictions not on the
run times of previous applications, but on the relationship between application run
times and user predictions. For example, a prediction for the ratio of actual run
time to user-predicted run time can be used along with the user-predicted run time
of a particular application to predict the run time of the application. We use this

technique for the ANL and CTC workloads by storing relative run times (i.e. the run
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Table 3.3: Templates used by Gibbons for run-time prediction.

‘ Number ‘ Template ‘ Predictor ‘
1 (u,e,n,rtime) mean
2 (u,e) linear regression
3 (e,n,rtime) mean
4 (e) linear regression
5 (n,rtime) mean
6 O linear regression

times divided by the user-specified maximum run times) as data points in categories

instead of the actual run times.

3.1.4 Template Definition and Search

We have not yet addressed the question of how we define an appropriate set of
templates. This is a nontrivial problem. If too few categories are defined, we group
too many unrelated jobs together and obtain poor predictions. On the other hand,
if too many categories are defined, we have too few jobs in a category to make
accurate predictions.

Downey and Gibbons both select a fixed set of templates to use for all of their
predictions. Downey uses a single template containing only the queue name; pre-
diction is based on a conditional probability function. Gibbons uses the six tem-
plates/predictor combinations listed in Table 3.3. The running time (rtime) char-
acteristic indicates how long an application has been executing when a prediction
is made for the application. Section 3.3 discusses further details of their approaches
and presents a comparison with our work.

We use search techniques to identify good templates for a particular workload.

While the number of application characteristics included in our traces is relatively
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small, the fact that effective template sets may contain many templates means
that an exhaustive search is impractical. Hence, we consider alternative search
techniques. Results for greedy and genetic algorithm search are presented in this
chapter.

The greedy and genetic algorithms both take as input a workload W from Ta-
ble 3.1 and produce as output a template set; they differ in the techniques used
to explore different template sets. Both algorithms evaluate the effectiveness of a
template set T' by applying the algorithm of Section 3.1.2 to workload W. Predicted
and actual values are compared to determine for W and T' both the mean error and

the percentage of predictions that fall within the 90 percent confidence interval.

Greedy Algorithm

The greedy algorithm proceeds iteratively to construct a template set T' = {t;} with

each t; of the form

{ () (hl,l) (h2,17 h?,?)a L (hi,lv hi,?y R hz,z) }7

where every h;; is one of the n characteristics by, hq ..., h, from which templates
can be constructed for the workload in question. The search over workload W is

performed with the following algorithm:
1. Set the template set 7' = {()}.
2. Fori=1ton

(a) Set T. to contain the (%) different templates that contain ¢ characteris-

tics.

(b) For each template ¢, in T,
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i. Create a candidate template set X. =T U {¢.}.

ii. Apply the algorithm of Section 3.1.2 to W and X,., and determine

mean error.

(c) Select the X, with the lowest mean error, and add the associated template

t.toT.

Our greedy algorithm can search over any set of characteristics.

Genetic Algorithm

The second search algorithm that we consider uses genetic algorithm techniques to
achieve a more detailed exploration of the search space. Genetic algorithms are
a probabilistic technique for exploring large search spaces, in which the concept
of cross-over from biology is used to improve efficiency relative to purely random
search [33]. A genetic algorithm evolves individuals over a series of generations. The
process for each generation consists of evaluating the fitness of each individual in the
population, selecting which individuals will be mated to produce the next generation,
mating the individuals, and mutating the resulting individuals to produce the next
generation. The process then repeats until a stopping condition is met. The stopping
condition we use is that a fixed number of generations have been processed. There
are many different variations to this process, and we will next describe the variations
we used.

Our individuals represent template sets. Each template set consists of between 1
and 10 templates, and we encode the following information in binary form for each

template:

1. Whether a mean or one of the three regressions is used to produce a prediction
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2. Whether absolute or relative run times are used

3. Whether each of the binary characteristics associated with the workload in

question is enabled

4. Whether node information should be used and, if so, the range size from 1 to

512 in powers of 2

5. Whether the amount of history stored in each category should be limited and,

if so, the limit between 2 and 65536 in powers of 2

The ranges for the number of nodes and the history are selected to be close to the
maximum number of nodes requested by an application and the maximum number
of applications in a workload that we are simulating.

A fitness function is used to compute the fitness of each individual and therefore
its chance to reproduce. The fitness function should be selected so that the most
desirable individuals have higher fitness and therefore have more offspring, but the
diversity of the population must be maintained by not giving the best individuals
overwhelming representation in succeeding generations. In our genetic algorithm,
we wish to minimize the prediction error and maintain a range of individual fitnesses
regardless of whether the range in errors is large or small. The fitness function we

use to accomplish this goal is

Emaa:_E
Fmin + Emaz—Emin X (Fmax - szn);

min

where F is the error of the individual (template set), F,.;, and E,,,; are the mini-
mum and maximum errors of individuals in the generation, and F),;, and F,,,, are

the desired minimum and maximum fitnesses desired. We choose F,,;, = 20 and
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Faz = 80 because for a set of experiments, these values are the best for finding the
best individuals but maintaining the diversity of the population.

We use a common technique called stochastic sampling with replacement to select
which individuals will mate to produce the next generation. In this technique, each

parent is selected from the individuals by selecting individual ¢ with probability

F;
2F

The mating or crossover process is accomplished by randomly selecting pairs of

individuals to mate and replacing each pair by their children in the new population.
The crossover of two individuals proceeds in a slightly nonstandard way because
our chromosomes are not fixed length but a multiple of the number of bits used
to represent each template. Two children are produced from each crossover by

randomly selecting a template ¢ and a position p in the template from the first

individual 77 = 1y1,...,t;, and randomly selecting a template j in the second
individual T3 = t34,. .., {3, so that the resulting individuals will not have more than
10 templates. The new individuals are then Tl =111, sl ta i1, lom
and Ty = log...taj-1,n2,t1,i41, .-, Lin. If there are b bits used to represent each

template, ny is the first p bits of ¢; ; concatenated with the last b— p bits of {5 ;, and
ng is the first p bits of {; ; concatenated with the last b — p bits of ¢, ;.

In addition to using crossover to produce the individuals of the next generation,
we also use a process called elitism whereby the best individuals in each generation
survive unmutated to the next generation. We use crossover to produce all but two
individuals for each new generation and use elitism to select the last two individuals
for each new generation. We choose two individuals using elitism because typically,
only a very few individuals need to be choosen this way to improve performance

and choosing two instead of one made the rest of the genetic algorithm easier to
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implement. The individuals resulting from the crossover process are mutated to
help maintain a diversity in the population. Fach bit representing the individuals

is flipped with a probability of 0.01.

3.2 Experimental Results

In the preceding section we described our basic approach to run-time prediction.
We introduced the concept of template search as a means of identifying efficient
criteria for selecting “similar” jobs in historical workloads. We also noted potential
refinements to this basic technique, including the use of alternative search meth-
ods (greedy vs. genetic), the introduction of node count information via regression,
support for user guidance, and the potential for varying the amount of historical in-
formation used. In the rest of this chapter, we discuss experimental studies that we
have performed to evaluate the effectiveness of our techniques and the significance
of the refinements just noted.

Our experiments used the workload traces summarized in Table 3.1 and are

intended to answer the following questions:

o What is the relative effectiveness of the mean and regression predictors?

e What is the impact of user guidance as represented by the maximum run times

provided on the ANL and CTC SPs?

o What is the impact of varying the number of nodes in each category on pre-

diction performance?

e What is the impact of varying the maximum amount of history kept by each

category?
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e How effectively do our greedy and genetic search algorithms perform?
e What are the trends for the best templates in the workloads?

e How do our techniques compare with those of Downey and Gibbons?

Greedy Search

Figure 3.1 and Figure 3.2 shows the results of our first set of greedy searches for
template sets. The characteristics searched over are the ones listed in Table 3.2.
Actual run times are used as data points and a curve is shown for each of the
predictors. Several trends can be observed from this data. First, adding a second
template with a single characteristic results in the most dramatic improvement in
performance. The addition of this template has the least effect for the C'TC workload
where performance is improved between 5 and 25 percent and has the greatest effect
for the SDSC workloads which improve between 34 and 48 percent. The addition of
templates using up to all possible characteristics results in less improvement than
the addition of the template containing a single characteristic. The improvements
range from 1 to 20 percent with the ANL workload seeing the most benefit and the
SDSC96 workload seeing the least.

Second, the graphs show that for the final template set, the mean is a better
predictor than any of the regressions. The final predictors obtained by using means
are between 2 and 18 percent more accurate than those based on regressions. The
impact of the choice of predictor on accuracy is greatest in the ANL workload and
least in the CTC workload. If we search over the predictor as well as the other
characteristics, the search results in a template set that is up to 11 percent better

than any search using a particular predictor.



140

130 &

120

110

100

90

Mean Error (minutes)

80

70

230

220 §)

210
200
190
180

Mean Error (minutes)

170
160
150

Workload ANL

Linear Regression ——
Logarithmic Regression -
Inverse Regression =
Mean -

2

3 4
Number of Templates

Workload CTC

Linear Regression ——
Logarithmic Regression - 1

Inverse Regression =
Mean -

3 4
Number of Templates

36

Figure 3.1: The mean errors of the greedy searches using run times as data points.
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Figure 3.2: The mean errors of the greedy searches using run times as data points.
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Figure 3.3 shows searches performed over the ANL and CTC workloads when
relative run times are used as data points. Similar to the data in Figure 3.1, adding
a second characteristic with a single characteristic results in the largest improve-
ment in performance. Also, comparing the prediction errors in Figure 3.3 with the
prediction errors in Figure 3.1 shows that using relative run times as data points
results in a performance improvement of 19 to 48 percent.

Table 3.4 lists for each workload the accuracy of the best category templates
found by the first set of greedy searches. In the last column, the mean error is
expressed as a fraction of mean run time. Mean errors of between 42 and 70 percent
of mean run times may appear high; however, as we will see later, these figures
are comparable to those achieved by other techniques, and our subsequent searches
perform significantly better.

Looking at the templates listed in Table 3.4, we observe that for the ANL and
CTC workloads, the executable and user name are both important characteristics
to use when deciding whether applications are similar. Examination of other data
gathered during the experiments shows that these two characteristics are highly
correlated: substituting the user name for executable or script name or vice versa in
templates results in similar performance in many experiments. This observation may
imply that users tend to run one application at a time on these parallel computers.

The templates selected for the SDSC workloads indicate that the user who sub-
mits an application is more important in determining application similarity than
the queue to which an application is submitted. Furthermore, Figure 3.1 shows
that adding the third template results in performance improvements of only 2 to
12 percent on the SDSC95 and SDSC96 workloads. Comparing this result with the

greater improvements obtained when relative run times are used in the ANL and
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CTC workloads suggests that SDSC queue classes are not good user-specified run-
time estimates. It would be interesting to use the resource limits associated with
queues as maximum run times. However, this information is not contained in the
trace data available to us.

We next performed a second series of greedy searches to identify the impact
of using node information when defining categories. We used node ranges when
defining categories as described in Section 3.1.1. The results of these searches in
Table 3.5 show that using node information improves prediction performance by 1
to 9 percent for the best predictors, with the largest improvement for the San Diego
workloads. This information and the fact that characteristics such as executable,
user name, and arguments are selected before nodes when searching for templates
indicates that the importance of node information to prediction accuracy is only
moderate.

Further, the greedy search selects relatively small node range sizes coupled with
user name or executable. This fact indicates, as expected, that an application
executes for similar times on similar numbers of nodes.

Our third and final series of searches identify the impact of setting a maximum
amount of history to use when making predictions from categories. The results of
these searches are shown in Table 3.6 (because of time constraints, no results are
available for the CTC workload). Comparing this data with the data in Table 3.5
shows that using a maximum amount of history improves prediction performance by
14 to 34 percent for the best predictors. The least improvement occurs for the ANL
workload, the most for the SDSC96 workload. Other facts to note about the results
in the table are that a maximum history is used in the majority of the templates

and that when a maximum history is used, it is relatively small. The latter fact
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indicates that temporal locality is relevant in the workloads.

3.2.1 Genetic Algorithm Search

We now investigate the effectiveness of using a genetic algorithm to search for the
best template sets by performing the same three series of searches. The results are
shown in Table 3.7 through Table 3.9 along with the results of the corresponding
greedy searches for comparison.

As shown in the tables, the best templates found during the genetic algorithm
search provide mean errors that are 10 percent better to 1 percent worse than the
best templates found during the greedy search. For the majority of the experiments,
the genetic search outperforms the greedy search.

The best template sets identified by the genetic search procedure are listed in
Table 3.10. This data shows that similar to the greedy searches, the mean is the sin-
gle best predictor to use and using relative run times as data points, when available,
provides the best performance.

Another observation is that node information and a maximum history are used
throughout the best templates found during the genetic search. This confirms the
observation made during the greedy search that using this information when defining
templates results in improved prediction performance.

Figure 3.4 shows the progress of the two different search algorithms for a search
of template sets for the ANL workload that use the number of nodes requested,
limit the maximum history, either actual or relative run times, and use any of the
predictors. The graph shows that while both searches result in template sets that
have nearly the same accuracy, the genetic algorithm search does so much more

quickly. This fact is important because a simulation that takes minutes or hours is
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Table 3.7: Performance of the best templates found during first genetic algorithm
search.

Genetic Algorithm Greedy
Workload | Mean Error | Percentage of | Mean Error | Percentage of
(minutes) | Mean Run Time | (minutes) | Mean Run Time
ANL 39.32 40.37 40.68 41.77
CTC 107.02 58.74 118.89 65.25
SDSC95 65.27 60.57 75.56 70.12
SDSC96 80.37 48.28 82.40 49.50

Table 3.8: Performance of the best templates found during second genetic algorithm

search.
Genetic Algorithm Greedy
Workload | Mean Error | Percentage of | Mean Error | Percentage of
(minutes) | Mean Run Time | (minutes) | Mean Run Time

ANL 38.79 39.83 39.87 40.93

CTC 106.25 58.32 118.05 64.80
SDSC95 60.03 55.71 67.63 62.76
SDSC96 74.75 44.90 76.20 45.77

Table 3.9: Performance of the best templates found during third genetic algorithm
search.

Genetic Algorithm Greedy
Workload | Mean Error | Percentage of | Mean Error | Percentage of
(minutes) | Mean Run Time | (minutes) | Mean Run Time
ANL 34.52 35.44 34.28 35.20
CTC 98.28 53.95 no data no data
SDSC95 43.20 40.09 48.33 45.16
SDSC96 47.47 28.51 50.14 30.12
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Figure 3.4: Search efficiency for workload ANL.

performed to evaluate each template set.

3.3 Related Work

Gibbons [31, 32] also uses historical information to predict the run times of parallel
applications. His technique differs from ours principally in that he uses a fixed set
of templates and different characteristics to define templates. Gibbons produces
predictions by examining categories derived from the templates listed in Table 3.3,
in the order listed, until a category that can provide a valid prediction is found.
This prediction is then used as the run-time prediction.

The set of templates listed in Table 3.3 results because Gibbons uses templates of
(u,e), (e), and () with subtemplates in each template. The subtemplates use the
characteristics n and rtime (how long an application has executed). In this chapter,
we use the user, executable, and nodes characteristics but not the running time. In

this chapter, we are predicting the execution times of applications before they begin
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Table 3.11: Comparison of our prediction technique with that of Gibbons.

Our Mean Error
Gibbons’s Mean Error | Greedy Search | Genetic Algorithm
Workload (minutes) (minutes) (minutes)
ANL 75.26 34.28 34.52
CTC 124.06 117.97 98.28
SDSC95 74.05 48.33 43.20
SDSC96 122.55 50.14 47.47

to execute so this characteristic has no value. We use the running time characteristic
in later chapters when run-time predictions are made after applications have started
executing. Gibbons also uses the requested number of nodes slightly differently from
the way we do: rather than having equal-sized ranges specified by a parameter, as
we do, he defines the fixed set of exponential ranges 1, 2-3, 4-7, 8-15, and so on.

Another difference between Gibbons’s technique and ours is how he performs a
linear regression on the data in the categories (u,e), (e), and (). These categories
are used only if one of their subcategories cannot provide a valid prediction. A
weighted linear regression is performed on the mean number of nodes and the mean
run time of each subcategory that contains data, with each pair weighted by the
inverse of the variance of the run times in their subcategory.

Table 3.11 compares the performance of Gibbons’s technique with our technique.
Using code supplied by Gibbons, we applied his technique to our workloads. We see
that our greedy search results in templates that perform between 4 and 59 percent
better than Gibbons’s technique and our genetic algorithm search finds template
sets that have between 21 and 61 percent lower mean error than the template sets
Gibbons selected.

In his original work, Gibbons did not have access to workloads that contained
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Table 3.12: Comparison of our prediction technique to that of Gibbons, when Gib-
bons’s technique is modified to use run times divided by maximum run times as
data points

Our Mean Error

Gibbons’s Mean Error | Greedy Search | Genetic Algorithm
Workload (minutes) (minutes) (minutes)
ANL 49.47 34.28 34.52
CTC 107.41 117.97 98.28

the maximum run time of applications, so he could not use this information to refine
his technique. In order to study the potential benefit of this data on his approach,
we reran his predictor while using application run time divided by the user-specified
maximum run time. Table 3.12 shows our results. Using maximum run times
improves the performance of Gibbons’s prediction technique on both workloads,
although not to the level of the predictions found during our searches.

Downey [16] uses a different technique to predict the execution time of parallel
applications. His procedure is to categorize all applications in the workload, then
model the cumulative distribution functions of the run times in each category, and
finally use these functions to predict application run times. Downey categorizes
applications using the queues that applications are submitted to, although he does
state that other characteristics can be used in this categorization.

Downey observed that the cumulative distributions can be modeled by using a
logarithmic function: By + (1 Int, although this function is not completely accurate
for all distributions he observed. Once the distribution functions are calculated, he
uses two different techniques to produce a run-time prediction. The first technique
uses the median lifetime given that an application has executed for a time units. If

one assumes the logarithmic model for the cumulative distribution, this equation is
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The performance of both of these techniques are shown in Table 3.13. We have
reimplemented Downey’s technique as described in [16] and used his technique on our
workloads. The predictions are made assuming that the application being predicted
has executed for one second. The data shows that of Downey’s two techniques, using
the median has better performance in general, and the template sets found by our
genetic algorithm perform 45 to 64 percent better than Downey’s best predictors.
There are two reasons for this performance difference. First, our techniques use
more characteristics than just the queue name to determine which applications are
similar. Second, calculating a regression to the cumulative distribution functions
minimizes the error for jobs of all running times while we concentrate on accurately
predicting jobs with a running time of 0.

Iverson et. al. [41] and Kapadia et. al. [42] have recently published work on
predicting the execution times of parallel applications. Both techniques identify
application runs by a set of characteristics or features and use statistical analysis of
historical data to produce predictions. Their techniques differ from ours in that they
do not categorize applications explicitly. Instead, they define a distance function
and use the historical applications that are close to the application being predicted
using this distance function to form a prediction. They use various equations to

form predictions from the & nearest neighbors, such as averaging the £ neighbors,
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performing a weighted average, or a polynomial regression. Iverson also incorporates
features of the machines running the applications into the feature vectors of the
applications. This allows historical run times on one machine to be used to predict
the execution times of applications on another.

The run-time predictions of these two groups are very similar to ours if you
express our technique as a different method for defining distance in the space of
historical applications and not having a fixed value for k£, but considering all ap-
plications within a certain distance. We also do not perform weighted averages or
regressions when computing predictions. From the results presented by Kapadia,
these weighting techniques could possibly improve the performance of our run-time
prediction technique. Another difference is the amount of time it takes to make
a prediction. To compute a prediction using the & nearest neighbors algorithm,
it takes O(n(p + logn)) time where p is number of features used to describe each
application and n is the number of points in the historical database. At worst, if
we use a category that contains all applications, our technique takes O(n) time to
form a prediction since we use a constant number of templates to form categories.

The Network Weather Service (NWS) [62] is another example of a project to use
statistical techniques to forcast properties of systems. It was originally targeted to
predicting network performance but it can also be used to predict other properties of
systems such as application execution times. There are several differences between
the prediction techniques of the NWS and our work. First, different statistical
techniques are used. Second, the NWS is targeted to predicting a characteristic
when given a historical time series of values for that characteristic. It does not
attempt to use other characteristics that may be available for the data in the way

that we do to try to find the best historical data points to use to form a prediction.
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This may limit the performance of the NWS predictions in certain cases, such as

predicting application execution time, when there is information available that is

not used by the NWS.

3.4 Predictions in Practice

The searches we performed in previous sections evaluate a template set using all of
the applications in a workload and the error is reported when predicting the same
set of applications. This does not match what happens in practice. In practice, a
template set is chosen using some number of applications that have already executed
and the template set is then used to predict the run times of applications that are
submitted in the future. We chose this approach for several reasons. First, this
is the same procedure used by Downey when he calculated cumulative distribution
functions and we wanted a direct comparison to his work. Second, determining the
optimal amount of history to use when searching and how long to use a template
set dramatically increases the amount of time it takes to find the template sets that
should be used to predict application run times.

In this section, we present prediction performance results for the ANL workload
when 7, 14, or 28 days of data are searched over to find template sets and then
these template sets are used to predict run times for 7, 14, or 28 days. This process
is repeated for every prediction interval so that all applications except those in the
first 7, 14, or 28 day prediction interval are predicted. We search for templates
using a genetic algorithm search and insert the data that was trained over into the
historical database before predictions begin. The performance for various training

set sizes and usage times are shown in Table 3.14.
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Table 3.14: Performance of our run-time prediction techniques on the ANL workload
with different training set sizes and lengths of use.

Training Length | Time of Use | Mean Prediction
(days) (days) Error (minutes)

all all 34.28

7 7 37.89

14 14 40.86

28 28 38.43

The first row in the table shows the performance we achieved when we searched
for templates over the entire ANL workload and then used these templates to predict
application run times for the same applications. Comparing this performance to the
data in the rest of the table seems to indicate that we gained at least an 11 percent
benefit in performance by searching over the entire workload to find our templates.
However, there are two factors this data does not show. First, the most accurate
predictions happen to occur at the beginning of the workload. Since there is no data
before the start of the workload to search over, predictions cannot be made at the
start of the workload and therefore are not incorporated into the new mean errors
presented here. Second, we are only creating a historical database using the data
from the interval that we trained over. If we used all of the historical data up to
the end of the training set, we might achieve more accurate predictions. These two
factors indicate that the advantage we gained by searching for templates over the

entire workload is less than it appears in the table.
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3.5 Summary

We have described a novel technique for using historical information to predict the
run times of parallel applications. Our technique is to derive a prediction for a
job from the run times of previous jobs judged similar by a template of key job
characteristics. The novelty of our approach lies in the use of search techniques to
find the best templates. We experimented with the use of both a greedy search and
a genetic algorithm search for this purpose, and we found that the genetic search
performs better for every workload and finds templates that result in prediction
errors of 29 to 54 percent of mean run times in four supercomputer center workloads.
The greedy search finds templates that result in prediction errors of 30 to 65 percent
of mean run times. Furthermore, these templates provide more accurate run-time
estimates than the techniques of other researchers: we achieve mean errors that are
21 to 61 percent lower error than those obtained by Gibbons and 45 to 64 percent
lower error than Downey.

We find that using user guidance in the form of user-specified maximum run
times when performing predictions results in a significant 19 percent to 48 percent
improvement in performance for the Argonne and Cornell workloads. This suggest a
simple way to greatly improve prediction performance: ask users to provide their own
predictions and use this information when calculating predictions. We used both
means and three types of regressions to produce run-time estimates from similar past
applications and found that means are the single most accurate predictor but using
a combination of predictors improves performance. For the best templates found in
the greedy search, using the mean for predictions resulted in between 2 percent and
18 percent smaller errors, and using all predictors resulted in no improvement to 11

percent improvement.
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Our work also provides insights into the job characteristics that are most useful
for identifying similar jobs. We find that the names of the submitting user and the
application are the most important characteristics to know about jobs. Predicting
based on the number of nodes only improves performance by 2 to 9 percent. We
also find that there is temporal locality, and hence specifying a maximum history

improves prediction performance by 14 to 34 percent.

3.6 Future Work

There are several possible areas of future work. First, our prediction techniques
could be used along with more detailed descriptions of applications. For example,
users could identify important characteristics of their applications to the run-time
predictor. These characteristics are most likely stored in configuration files or given
on the command line in such a way that our current techniques cannot identify them.
Identifying characteristics such as mesh size, input size, number of iterations, unique
identities for input data, and so forth could result in more accurate predictions. Since
these characteristics would be unique to an application, we would modify our search
techniques to search over the characteristics of each application separately to find
the best way to use these characteristics to form run-time predictions. The large
number of search spaces, but small search spaces, could possibly reduce the time it
takes to search for template sets.

A second area of future work is to extend our run-time prediction technique
to metacomputing applications. If we can predict how long an application would
take to complete on different sets of resources, this would greatly assist the user in

selecting which sets of resources to use to execute their applications.



57

A third area of future work is to use our run-time prediction technique to predict
other events. Our technique can be used to predict properties of events that are de-
fined by any set of characteristics. For example, we could take data on automobile
accidents, characterize the drivers of the automobiles and the automobiles them-
selves, and search for the best ways to group drivers and their automobiles so that
we can predict how many accidents they will be in or the damages that will occur.
We will describe one example of using our technique for different events, predicting

queue wait times, in Chapter 4.



Chapter 4

Wait-Time Prediction

On many high-performance computers, a request to execute an application is not
serviced immediately but is placed in a queue and serviced only when the neces-
sary resources are released by running applications. On such systems, predictions
of how long queued requests will wait before being serviced are useful for a variety
of tasks. For example, predictions of queue wait times can guide a user in selecting
an appropriate queue or, in a metacomputing environment, to an appropriate com-
puter [30]. Wait-time predictions are also useful in a metacomputing environment
when trying to submit multiple requests so that the requests all receive resources
simultaneously [13]. A third use of wait-time predictions is to plan other activities
in conventional supercomputing environments.

We examine two different techniques for predicting how long applications wait
until they receive resources in this environment. Our first technique for predicting
wait times in scheduling systems is to predict the execution time for each application

in the system (using the techniques presented in Chapter 3 and [55]) and then use

38
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those predicted execution times to drive a simulation of the scheduling algorithm.
This allows us to determine the start time of every job in the scheduling system.
The advantage of this technique is that, with certain scheduling algorithms and
accurate run-time predictions, it can potentially provide very accurate wait-time
predictions. A disadvantage is that if the scheduling algorithm is such that the
start times of applications in the queues depend on applications that have not yet
been submitted to the queues, the wait-time predictions will not be very accurate.
A second disadvantage of this technique is that it requires detailed knowledge of
the scheduling algorithm used by the scheduling system. We use four workloads
recorded from supercomputers to evaluate our techniques. We find that our first
technique has prediction errors of between 30 and 59 percent of mean wait times.
In previous work we showed that this error is significantly better than when the
run-time prediction techniques of other researchers are used [56].

Our second wait-time prediction technique predicts the wait time of an appli-
cation by using the wait times of applications in the past that were in a similar
scheduler state. For example, if an application is in a queue with four applications
ahead of it and three behind it, how long did applications in this same state wait in
the past? This approach uses the same mechanisms as our approach to predicting
application execution times with different characteristics used to describe the events
we are predicting. This technique has prediction errors of between 49 and 94 percent
of mean wait times and is 42 percent worse than the first technique.

The remainder of this chapter is organized as follows. Section 4.1 describes
the scheduling algorithms we consider in this chapter. Then, Sections 4.2 and 4.3
describes our two queue wait time prediction techniques and presents their perfor-

mance.
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4.1 Scheduling Algorithms

We use three basic scheduling algorithms in this work: first-come first-served (FCFS),
least work first (LWF), and conservative backfill [44, 21] with FCFS queue ordering.
In the FCFS algorithm, applications are given resources in the order in which they
arrive. The application at the head of the queue runs whenever enough nodes be-
come free. The LWF algorithm also tries to execute applications in order, but the
applications are ordered in increasing order using estimates of the amount of work
(number of nodes multiplied by estimated wallclock execution time) the application
will perform.

The backfill algorithm is a variant of the FCFS algorithm. The difference is that
the backfill algorithm allows an application to run before it would in FCFS order if
it will not delay the execution of applications ahead of it in the queue (those that
arrived before it). When the backfill algorithm tries to schedule applications, it
examines every application in the queue, in order of arrival time. If an application
can run (there are enough free nodes and running the application will not delay the
starting times of applications ahead of it in the queue), it is started. If an application
cannot run, nodes are “reserved” for it at the earliest possible time. This reservation
is only to make sure that applications behind it in the queue do not delay it; the

application may actually start before the reservation time.

4.2 Predicting Queue Wait Times: Technique 1

Our first wait-time prediction technique simulates the actions performed by a sched-
uling system using predictions of the execution times of the running and waiting

applications. We simulate the FCFS, LWF, and backfill scheduling algorithms and
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predict the wait time of each application when it is submitted to the scheduler.

4.2.1 Results

Table 4.1 shows the wait-time prediction performance when actual run times are
used during prediction. No data is shown for the FCFS algorithm because there
is no error when computing wait-time predictors in this case. The reason is that
later arriving jobs do not affect the start times of the jobs that are currently in
the queue. For the LWF and backfill scheduling algorithms, wait-time prediction
error does occur because jobs that have not been enqueued can affect when the
jobs currently in the queue can run. This effect is larger for the LWF results where
later-arriving jobs that wish to perform smaller amounts of work move to the head
of the queue. As one can see in the table, the wait-time prediction error for the LWF
algorithm is between 34 and 43 percent: there is a very high built-in error when
predicting queue wait times of the LWF algorithm with this technique. There is
also a small error (3 - 4%) when predicting the wait times for the backfill scheduling
algorithm.

Table 4.2 shows the wait-time prediction errors while using maximum run times
as run-time predictions. The wait-time prediction error of the LWF algorithm when
using actual run times as run-time predictors is 59 to 80 percent better than the
wait-time prediction error when using maximum run times as the run-time predictor.
For the backfill algorithm, using maximum run times results in between 96 and 99
percent worse performance than using actual run times. Maximum run times are
used to predict run times in scheduling systems such as EASY [44]. These predictions
are provided in the ANL and CTC workload and are implied in the SDSC workloads

because each of the queues in the two SDSC workload has maximum limits on
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Table 4.1: Wait-time prediction performance using actual run times.

Wait-Time Prediction
Scheduling || Mean Error Percentage of

Workload | Algorithm || (minutes) | Mean Wait Time

ANL LWF 37.14 43

ANL Backfill 5.84 3

CTC LWF 4.05 39

CTC Backfill 2.62 10
SDSC95 LWF 5.83 39
SDSC95 Backfill 1.12 4
SDSC96 LWF 3.32 42
SDSC96 Backfill 0.30 3

resource usage. To derive maximum run times for the SDSC workloads, we find the
longest running job in each queue and use that as the maximum run time for all jobs
in that queue. The maximum run times are provided explicitly or implicitly in the
workloads so they are available for use as run-time predictors and can be considered
as an upper bound on run-time prediction performance.

Table 4.3 shows that our run-time prediction technique results in run-time pre-
diction errors that are from 33 to 86 percent of mean application run times and
wait-time prediction errors that are from 34 to 77 percent of mean wait times. The
best wait-time prediction performance occurs for the ANL workload and the worst
for the SDSC96 workload. This is the opposite of what we expect from the run-
time prediction errors. The most accurate run-time predictions are for the SDSC96
workload. This implies that accurate run-time predictions are not the only factor
that determines the accuracy of wait-time predictions.

The results when using our run-time predictor also show that the mean wait
time prediction error is 19 to 42 percent worse than when predicting wait times for

the LWF algorithm using actual run times. Finally, using our run-time predictor



63

05 99°6¢ 86T 8 L6 MyPed | 960SAS
081 6171 86T 0€'L6€ AMT | 960SAS
887 €8 LY 9€2 99'76¢ SADA | 960SAS
£ee I8°€6 6V€ 0G°LLE myped | ¢60SAS
161 982 62 0G'9G¢€ AMT | €6DSS
€62 2L'ToT £9¢ 16668 SADA | €60SAS
061 911G A 9£F97 [ypeg DLO
V6 986 Al LGVET AMT DLO
Nal 9g'Gel Al L6°EVE SADA DLD
e 50'62F SET 8 TET 1Yo INV
Al Z1'L6 802 £C'€0T AMT INV
981 19°966 201 €266 SADA INV

OUILT, YA\ ROly | (sojnurm) | oIy, uny] weoly | (sojnurur) || wnpiLoS[y | prOI0M

%O @W@@Q@UM@& ,HO,HHMH Q@@E %O @W@@ﬁwu,ﬁwm ,HOH,HMH Q@@E WQ:S‘TQQUM

uororpald OUWIL T -JTeAN

uor)orpald oUW T, -Uny

‘Soul) ung trnuirxeur WHﬂmS @UQ@HE.HO%.HQQ QOMPU@TQHQ QUWIN-1IRAN 10T olqul,




64

results in 53 to 86 percent better wait time predictions than when using maximum

run times as the run-time predictors.

4.3 Predicting Queue Wait Times: Technique 2

Our second wait-time prediction technique uses historical information on scheduler
state to predict how long applications will wait until they receive resources. This
is an instance of the same general prediction approach that we use to predict ap-
plication run times in Chapter 3. When we predict application run times, there is
only a limited set of application characteristics that are provided in the trace data.
We therefore used all of the characteristics provided to describe the applications.
There are no already-defined characteristics of scheduler state so we chose what we
believe to be an appropriate set. These characteristics are described in Table 4.4
and describe the parallel computer being scheduled, the application whose wait time
is being predicted, the time the prediction is being made, the applications that are
waiting in the queue ahead of the application being predicted, and the applications
that are running.

Table 4.5 shows the performance of this wait-time prediction technique. The
data shows that the wait-time prediction error is 42 percent worse on average than
our first wait-time prediction technique. One trend to notice is that the predictions
for the FCFS scheduling algorithm are the most accurate for all of the workloads,
the predictions for the backfill algorithm are all the second most accurate, and the
predictions for the LWF algorithm are the least accurate. This is the same pattern
when the first wait-time prediction technique is used with actual run times. This

indicates that our second technique is also affected by not knowing what applications
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Table 4.4: Characteristics of scheduler state.

‘ Characteristic of ‘

Characteristic

Machine Number of free nodes
Application Number of nodes
Application Maximum run time
Application Num nodes * Max run time
Application Waiting time

Prediction time

Time of day

Prediction time

Time of month

Waiting jobs ahead

Number of jobs

Waiting jobs ahead

Sum(nodes * max rt)

Waiting jobs ahead

Sum(nodes * pred rt)

Running jobs

Number of jobs

Running jobs

Sum(nodes * max rt)

Running jobs

Sum(nodes * pred rt)
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will be submitted in the near future. Also, the wait-time prediction error using our
second prediction technique for the FCFS algorithm is significantly better than the
prediction error for the LWF and backfill scheduling algorithms. This seems to
indicate that the characteristics we chose to represent scheduler state are better for
representing the FCFS scheduler state than the state of the other two scheduling

algorithms.

4.4 Summary

In this chapter, we use two techniques to predict how long applications wait before
receiving resources from scheduling systems. These predictions are useful for select-
ing a queue or parallel computer, when seeking to obtain access to resources from
multiple computers, and scheduling other activities.

Our first technique for predicting queue wait times is to run scheduling simula-
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Table 4.5: Wait-time prediction performance of our second technique.

Wait-Time Prediction
Scheduling || Mean Error Percentage of

Workload | Algorithm || (minutes) | Mean Wait Time

ANL FCFS 260.36 49

ANL LWF 76.78 88

ANL Backfill 130.35 74

CTC FCFS 76.18 78

CTC LWF 9.80 94

CTC Backfill 22.95 85
SDSC95 FCFS 39.79 72
SDSC95 LWF 13.67 91
SDSC95 Backfill 25.50 90
SDSC96 FCFS 10.55 64
SDSC96 LWF 6.83 87
SDSC96 Backfill 9.26 82

tions using predictions of application execution times. Our technique for predicting
application run times is to derive a prediction for an application from the run times
of previous applications judged similar by a template of key job characteristics.
The novelty of our approach lies in the use of search techniques to find the best
templates. The advantage of this approach is that it results in more accurate wait-
time predictions than the second approach. The disadvantages are that it requires
knowledge of the scheduling algorithm and has an inherent limitation because it
does not consider the effect of applications that have not been enqueued yet. The
wait-time prediction errors of our first wait-time prediction technique are from 30
to 59 percent of mean wait times. This is 74 percent better on average than when
using maximum run times as the run-time predictors, moreover, our previous work
has shown that it is significantly better than when using the run-time predictors of

other researchers.
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Our second wait-time prediction technique is to use the wait times experienced
by applications in similar past scheduling states to predict how long an application
will wait until it receives resources. We find that this technique has the advantage
of operating without knowledge of the scheduling algorithm being used but it has
lower performance than our first technique. We find that this technique has wait-
time prediction errors that are 49 to 94 percent of mean wait times and are on

average 42 percent worse than the prediction errors of our first technique.

4.5 Future Work

There are several possible ways to improve the performance of our wait-time predic-
tion techniques in the future. The performance of our first technique that predicts
application run times and performs scheduler simulations could be improved by an-
alyzing the arriving applications. Our scheduler simulator could use a synthetic
workload of applications that will arrive in the future to approximate the appli-
cations that will arrive and improve it’s wait time prediction performance when
applications that have not arrived yet can affect scheduling decisions. Our second
wait time prediction technique could possibly be improved by studying what char-
acteristics should be used to describe scheduler state when predicting wait times.
Another possible way to improve wait time prediction performance is to com-
bine our two techniques. If our first prediction technique is producing errors in
predictable ways (one case where this might occur is when applications that have
not been submitted can affect the scheduling of applications that have already been
submitted), then we could attempt to adjust the predictions to reduce the error.

One ideal way to do this is to have the prediction made by the first technique be
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one of the characteristics used by our second wait time prediction technique. The

prediction made by the second technique would then be given to the user.



Chapter 5

Scheduling with Predictions

Many scheduling algorithms use predictions of application execution times when
making scheduling decisions [44, 21, 19]. In this chapter, we investigate if our
run-time predictions result in better schedules when used with two commonly used
scheduling techniques. These algorithms use run-time predictions when making
scheduling decisions, and we therefore expect that more accurate run-time predic-
tions will improve scheduling performance. Using our run-time predictions and our
four workloads recorded from the Argonne SP, Cornell SP, and the SDSC Paragon,
we find that the accuracy of the run-time predictions has a minimal effect on the
utilization of the systems we are simulating. We also find that using our run-time
predictors results in mean wait times that are within 22 percent of the mean wait
times that are obtained if the scheduler exactly knows the run times of all of the ap-
plications. When comparing the different predictors, our run-time predictor results
in 2 to 67 percent smaller mean wait times for the workload with the highest offered

load. No prediction technique clearly outperforms the other techniques when the
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offered load is low.

The next section will describe how we find the best templates to use to predict
application run times when scheduling. Section 5.2 presents the performance of our
run-time predictions and compares this performance to the scheduling performance

when other run-time predictions are used.

5.1 Run-Time Prediction Experiments

The first thing we need to determine is what template sets to use to predict ap-
plication run times. To begin with, we will assume that the best way to optimize
scheduling performance is to minimize run-time prediction error. Therefore, we need
to determine what run-time predictions and insertions of run times to search over
to find the best template sets to use. This depends on the workloads and scheduling
algorithms we use. We use our four workloads recorded from the ANL SP, CTC SP,
and SDSC Paragon and the LWF and backfill scheduling algorithms described in
Section 4.1.

When using run-time predictions while scheduling, run-time predictions are also
made at different times for each algorithm /trace pair, and we attempt to find the op-
timal template sets to use for each pair. The FCFS algorithm does not use run-time
predictions when scheduling, so we only consider the LWF and backfill algorithms
here. For the LWF algorithm, all waiting applications are predicted whenever the
scheduling algorithm attempts to start an application (when any application is en-
queued or finishes). This occurs because the LWF algorithm needs to find the wait-
ing application that will use the least work. For the backfill algorithm, all running

and waiting applications are predicted whenever the scheduling algorithm attempts
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to start an application (when any application is enqueued or finishes).

We generate our run-time prediction workloads for scheduling using maximum
run times as run-time predictions. We note that using maximum run times will
produce predictions and insertions slightly different from those produced when the
LWF and backfill algorithms use other run-time predictions. Nevertheless, we be-
lieve that these run-time prediction workloads are representative of the predictions
and insertions that will be made when scheduling using other run-time predictors.

We also use a second technique to find the best templates to use to predict run
times. Instead of attempting to minimize run-time prediction error so that schedul-
ing performance is maximized, we perform scheduling simulations and attempt to
directly minimize wait times. We do not attempt to maximize utilization because
utilization only changes very slightly when different template sets are used or even

when a different scheduling algorithm is used.

5.2 Results

Our goal in this chapter is to improve the performance of the LWF and backfill
scheduling algorithms. Table 5.1 shows the performance of the scheduling algo-
rithms when the actual run times are used as run-time predictors. This is the best
performance we can expect in each case and serves as an upper bound on scheduling
performance.

Table 5.2 shows the performance of using maximum run times as run time pre-
dictions in terms of average utilization and mean wait time. The scheduling perfor-
mance when using the maximum run times can once again be considered an upper

bound for comparison. When comparing this data to the data in Table 5.1, one
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Table 5.1: Scheduling performance using actual run times.

Scheduling || Utilization | Mean Wait Time
Workload | Algorithm || (percent) (minutes)

ANL LWF 70.34 61.20

ANL Backfill 71.04 142.45

CTC LWF 55.18 11.15

CTC Backfill 55.18 27.11
SDSC95 LWF 41.14 14.48
SDSC95 Backfill 41.14 21.98
SDSC96 LWF 46.79 6.80
SDSC96 Backfill 46.79 10.42

can see that the maximum run times are an inaccurate predictor but this fact does
not affect the utilization of the simulated parallel computers. Predicting run times
with actual run-times when scheduling results in 3 to 27 percent lower mean wait
times, except in one case where using maximum run times results in 6 percent lower
mean wait times. The effect of accurate run-time predictions is highest for the ANL
workload which has the largest offered load.

Table 5.3 shows the performance of using our run-time prediction technique when
scheduling with the template sets found by the searches that were minimizing run-
time prediction error. The run-time prediction error in this case is between 22 and
119 percent of mean run times, slightly worse than the results when predicting run-
times for wait-time prediction. This worse performance is due to more predictions
being performed. First, more predictions are made of applications before they begin
executing; and these predictions do not have information about how long an applica-
tion has executed. Second, more predictions are made of long-running applications,
the applications that contribute the largest errors to the mean errors.

When scheduling using our run-time prediction technique, the mean wait times
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that are always worse than when using actual run times as predictions, and are 19
percent worse on average. There is very little difference in the utilizations when
our run-time predictions are used instead of actual run times. The mean wait
times achieved by the scheduling algorithms when using our run-time predictions
are 7 percent smaller on average than when predicting using maximum run times.
Our run-time predictions increase performance the most for the CTC workload and
decrease performance the most for the SDSC95 workload.

We were not very satisfied with the scheduling performance achieved when using
our previous run-time predictions. To attempt to improve scheduling performance,
we perform new searches. Instead of trying to minimize run-time prediction error,
we attempt to minimize mean wait times. Table 5.4 shows the performance of the
results of these searches. If this data is compared to the data in Table 5.3, one can
see that the wait time is improved in all cases by an average of 14 percent. Further,
the run time prediction error is larger for all but one of the template sets found
during the second search. For the backfill scheduling algorithm, the second search
finds run-time prediction templates that are 2 percent worse on average (one of the
cases is 48 percent better). For the LWF scheduling algorithm, the second search
finds run-time prediction templates that have 27 percent higher run-time prediction
errors. This shows that for the backfill algorithm there is some correlation between
run-time prediction accuracy and scheduling performance but this is not the case
for the LWF scheduling algorithm.

When comparing our run-time prediction technique to using maximum run times,
our technique has a minimal effect on the utilization of the systems, but it does
decrease the mean wait time in six of the eight experiments. Table 5.5 through

Table 5.7 show the performance of the scheduling algorithms when using Gibbons’s
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and Downey’s run-time predictors. The results indicate that once again, using our
run-time predictor does not produce greater utilization. The results also show that
our run-time predictor results in 1 to 23 percent lower mean wait times than Gib-
bons’ predictor. There is no trend to indicate that our run-time predictor is better
for a particular workload or scheduling algorithm. If we compare the scheduling per-
formance of our run-time predictor to scheduling performance when using Downey’s
run-time predictor, our predictor results in much smaller wait times for the ANL
workload but larger wait times when performing backfill scheduling of the other
workloads. In fact, Downey’s predictors result in lower wait times when backfilling
the CTC and SDSC workload than when using actual run times. One explanation
for this is that over-estimating execution times gives the scheduler more room to

start smaller jobs earlier, and therefore lowering the mean wait times [64].

5.3 Summary

In this chapter, we use our predictions of application run times to improve the
performance of the least-work-first and backfill scheduling algorithms. We find that
the utilization of the parallel computers we simulate does not vary greatly when
using different run-time predictors, but using our run-time predictions does improve
the mean wait times in general. In particular, our more accurate run-time predictors
have the largest effect on mean wait time for the C'TC workload. We also find that
on average, the mean wait time when using our predictor is only 5 percent larger
than the mean wait time that would occur if the scheduler knows the exact run times
of the applications. The difference in wait time is largest for the ANL workload, at

15 percent, which has the highest offered load. Further, the wait times are smaller
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when using our run-time predictions instead of Gibbons’. An interesting occurance
that we examine is that Downey’s run-time predictor results in lower wait-times

for the backfill scheduling algorithm and the CTC and SDSC workloads than our

run-time predictor or even when using actual run times as run-time predictions.

5.4 Future Work

One area of future work is if schedulers have accurate run-time predictions, what
should they do with them? Work presented in this chapter and in [64] indicate
that if current scheduling algorithms use more accurate run-time predictions, they
may not improve their scheduling performance. We could investigate new schedul-
ing algorithms that use more accurate run-time predictions in different ways. For
example, a scheduler could use maximum run times to calculate the latest time the
application should start. The scheduler could then perform a schedule optimization
technique such as bin packing [19] to produce an schedule that satisfies these start

time guarantees but optimizes wait time, for example.



Chapter 6

Reservations

Software support for metacomputing allows users to execute applications on re-
sources at more than one site. In many cases, an application will want simultaneous
access to resources controlled by more than one entity [30]. The problem with this
is that current supercomputer schedulers do not provide mechanisms to allow such
simultaneous access. At the present time, a user has to either communicate with
the administrators of the computers and arrange for resources to be reserved, or
submit applications to queues on each computer system with no guarantee that the
subapplications will execute simultaneously.

In this chapter, we investigate one solution to this coallocation problem: ad-
vanced reservation of resources. If a user can reserve resources ahead of time, reser-
vations can be made on several systems at the same time. We investigate several
different ways to add support for reservations into supercomputer scheduling sys-
tems and evaluate the performance. We evaluate scheduling performance using the

following metrics:
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o Utilization. The average percent of the machine that is being used by appli-

cations.

o Mean wait time. The average amount of time that applications wait before

receiving resources.

o Mean offset from requested reservation time. The average difference between
when the users initially want to reserve resources for each application and

when they actually obtain reservations.

We used utilization and mean wait time to evaluate scheduling systems in the pre-
vious chapter. These two metrics allow us to examine the effect that support for
reservations has on traditional scheduling performance. The mean offset from reser-
vation time is a new metric and measures how well the scheduler is at satisfying
reservation requests.

In this chapter, we use these metrics to evaluate a variety of techniques for
combining queuing scheduling with reservation. There are several assumptions and
choices to be made when doing this. The first is whether applications are restartable.
Most scheduling systems currently assume that applications are not restartable (a
notable exception is the Condor system [46]). Restartable applications can be sup-
ported either at the user level or the system level. If restarting is supported at
the user level, the application must be written so that if it is terminated, it can
be restarted without the results of the later execution(s) being affected by the par-
tial execution. In fact, if an application saves intermediate results, it can continue
execution using intermediate results. Restartable applications can be supported at
the system level by providing support for checkpointing and restarting applications

from checkpoints. One system that provides this support is Condor, although there
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are some limits on what services applications can use.

We evaluate scheduling techniques when applications both can and cannot be
restarted. We assume that when an application is terminated, intermediate results
are not saved and applications must restart execution from the beginning. This as-
sumption was made because system support for restartable applications is not widely
available and we do not have models for when the applications in our workloads save
intermediate results.

Another assumption we have to make is the model for reservation of resources.
We assume that a running application that was reserved cannot be terminated to
start another application. Further, we assume that once the scheduler agrees to
a reservation time, the application will start at that time. Further details of our
model are presented in Section 6.1

If we assume that applications are not restartable, then we must make sure that
nodes are available for applications with reservations because we assume that once a
reservation is made, the scheduler must fulfill it. To ensure that nodes are available,
we must use maximum run times when predicting application execution times and
the resulting scheduling algorithms essentially perform backfilling. Details of these
algorithms and their performance are presented in Section 6.2.

If applications are restartable, there are more options for the scheduling algo-
rithm and this allows us to improve the performance of scheduling systems. First,
the scheduler can use run-time predictions other than maximum run times. Second,
the scheduler can consider reservations when scheduling queued applications or not
consider them. Third, there are many different ways to select which running appli-
cations from the queue to terminate to start a reserved application. Details of these

options and their performance are presented in Section 6.3
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6.1 Reservation Model

Before we describe our scheduling algorithms that support reservations, we must
describe the model we use for reservations. First, in our model, a reservation re-
quest goes to a single supercomputer and consists of the number of nodes desired,
the maximum amount of time the nodes will be used, the desired start time, and
the application to run on those resources. Second, we assume that the following

procedure occurs when a user wishes to submit a reservation request:

1. The user asks if they can run an application at time 7, on N nodes for at

most M amount of time.

2. The scheduler makes the reservation at time 7, if it can. In this case, the

reservation time, T', equals the requested reservation time, 7.

3. If the scheduler cannot make the reservation at time 7)., it replies with a list of
times it could make the reservation and the user picks the available reservation

time 7" which is closest in time to 7.

We use this procedure when performing the scheduling simulations described
in the succeeding sections. Note that this procedure is realistic for what a user
would do on a single system but will not exactly match what a user will do when
trying to reserve resources from more than one scheduler simultaneously. When
reserving on more than one system, if the user cannot reserve resources at their
originally requested time T"** on all systems, the user will examine the lists of
times returned from the scheduler on each machine and pick a time 7" that
is available on all systems and is as close to T™* as possible. There should be

a correlation between the difference |T' — T,| and |T™¢* — T™™<*|. That is, if we
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develop a scheduling algorithm that reduces |T' — T,|, then |T™* — T¢%| should
be reduced as well when the schedulers use that scheduling algorithm.

The last part of the model is what occurs when an application is terminated.
First, only applications that came from a queue can be terminated. Second, when
an application is terminated, it is placed back in the queue from which it came. For
FCFS, the correct position in the queue for the terminated application is determined
by submission time. For LWF, the correct position is determined by the predicted
amount of work to be performed. Third, as was mentioned previously, when an

application is terminated, we assume that all of the work it performed is lost.

6.2 Nonrestartable Applications

In this section, we assume that applications cannot be terminated and restarted at
a later time and that once a reservation is agreed to by the scheduler, it must be
fulfilled. A scheduler with these assumptions must not start an application from
a queue unless it is sure that starting that application will not cause a reservation
to be unfulfilled. Further, the scheduler must make sure that reserved applications
do not execute longer than expected and prevent other reserved applications from
starting.

There are two mechanisms to be described to support these constraints. The
first is how the scheduler decides when an application from a queue can be started.
The technique used for this is very similar to the backfill algorithm: The scheduler
creates a timeline of when it believes the nodes of the system will be used in the
future. First, the scheduler adds the currently running applications and the reserved

applications to the timeline using their maximum run times. Then, the scheduler
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attempts to start applications from the queue using the timeline and the number of
nodes and maximum run time requested by the application to make sure that there
are no conflicts for node use.

In this chapter, we use both FCFS and LWF queue ordering. If backfilling is
not being performed, the timeline is still used when starting an application from the
head of the queue to make sure that the application does not use any nodes that
will be needed by reservations. Backfilling can be performed for both FCFS and
LWF queue ordering. In this case, the timeline is used to try to start applications
from the queue and to “reserve” nodes for the applications in the future if they
cannot start. These “reservations” are not true reservations, just placeholders so
that applications later in the queue will not start and delay the application. For
each application that cannot start at the current time, a “reservation” is made for
it at the earliest time that it can execute.

The second mechanism is how a scheduler makes a reservation. To make a reser-
vation, the scheduler first performs a scheduling simulation of applications currently
in the system and produces a timeline of when nodes will be used in the future. This
timeline is then used to determine when a reservation for an application can be made.
If the requested time for the reservation is not available, the scheduler presents the
user with a list of times when their reservation could be made and we assume that
the user picks the available time closest to their requested time. The scheduler
uses maximum run times when creating the timeline. This guarantees that reserved
applications do not conflict with running applications or other reserved applications.

One parameter that is used when reserving resources is the relative priorities of
queued and reserved applications. For example, if queued applications have higher

priority, then an incoming reservation cannot delay any of the applications in the
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queues from starting. If reserved applications have higher priority, then an incoming
reservation can delay any of the applications in the queue. The parameter we use is
the percentage of queued applications that can be delayed by a reservation request.

A second parameter is when reservations can be requested. Reservation requests
could be forced to ask for resources at least & hours in advance. We investigate the
impact of this parameter by examining the scheduling performance when reserva-
tions are made from zero to two, one to three, or two to four hours in the future.

To evaluate our scheduling algorithms that support reservations, we derive six
new workloads from each of the four workloads we have been using to this point.
We randomly change either ten percent or twenty percent of the applications in
an original workload to be reservations. We choose these percentages because we
believe that the majority of applications will not need reservations to execute and
policy decisions will be made so that there will be no start time advantage to making
a reservation over submitting to a queue. For each reservation, we randomly set the
ideal reservation time to be within either zero to two hours in the future, one to
three hours in the future, or two to four hours in the future.

In the next subsections, we first examine the effects of limiting reservation re-
quests to be at least zero, one, or two hours in the future. Second, we examine
the effect reservations have on utilization and the mean wait time of applications
from the queue. Third, we examine the changes in the difference between the re-
quested reservation time and the time the reservation is actually made when different
scheduling strategies are used. Fourth, we look at the changes in performance when

reservations can delay more or fewer applications in the queue.
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6.2.1 Effects of Reservation Time

In this section, we examine the effect on queued applications of not allowing reserva-
tions to be requested until later than some minimum time in the future. We examine
this effect by randomly selecting the requested reservation times for applications in
our workloads in various intervals in the future. We used three different intervals:
the current time to two hours in the future, one to three hours in the future, and
two to four hours in the future. We assume that a reservation cannot be made at a
time that would delay the start of any application currently in the queue (queued
applications have priority).

A sample of our data for the ANL workload is shown in Figure 6.1. This graph is
representative of our data and shows the mean wait time for the ANL workload with
various percentages of reservations and various intervals for requested reservation
times, FCFS queue ordering, queued applications given priority when performing
reservations, and backfilling is both used and not used. This data shows that how
far in the future the requested reservation times are has little impact on the mean
wait times. In fact, there is no correlation between reservations farther in the future
and lower wait times for queued applications. We also find that there is no change
in utilization when different intervals are used for requested reservation times.

Another sample of our data is shown in Figure 6.2. This graph is again repre-
sentative of our other data and shows the mean difference between the requested
reservation times specified by the applications and the actual time they reserved
resources for. Once again, the data is gathered from the ANL workload with two
different percentages of reservations and three different intervals for requested reser-
vation times, FCFS queue ordering, queued applications given priority when reserv-

ing, and backfilling is both used and not used. The graphs show that the interval for
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Figure 6.1: The mean wait times of queued applications for the ANL workloads with
various percentages of reservations and various intervals for requested reservations,
no restarting of applications, queued applications have priority, and using maximum
run times to predict.
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requested reservation time does affect how far reservations are from their requested
reservation times, but there is no consistent correlation between interval and offset
from requested reservation time. Further, most of the changes in offset are relatively
small.

From the data presented here and the data we collected from our other workloads
and scheduling algorithms, we determine that there is a relatively small and unpre-
dictable effect when reservations are made in different intervals in the future. This
indicates that there would be a relatively small, but unpredictable effect if a sched-
uler forces reservations to be made some minimum time in the future. Therefore,
the use of such a minimum time should be decided by policy, not any performance
effects.

For the rest of this chapter, we will only present data for workloads that have
reservations with requested times zero to two hours in the future. We present this
data because we believe that schedulers will not force users to reserve time later
than some minimum time.

An obvious observation from Figures 6.1 and 6.2 is that the number of reserva-

tions does affect scheduling performance. The next section will discuss these effects.

6.2.2 Effect of Reservations on Scheduling

This section evaluates the impact on the mean wait times of queued applications
when reservations are added to our workloads. We assume the best case for queued
applications: When reservations arrive, they cannot be scheduled so that they delay
any currently queued applications. First, we examine the wait times of queued
applications when backfilling is not allowed.

A sample of our data is shown in Figures 6.3 and 6.4. As one can see from
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the graphs, adding reservations increases the wait times of queued applications for
almost all scheduling algorithms, and numbers of nodes. For the data shown in
the figures, adding reservations delays queued applications from starting an average
of 10 percent when ten percent of the applications are reservations and 23 percent
when twenty percent of the applications are reservations. For all of the workloads,
queue wait times are increased an average of 24 percent when ten percent of the ap-
plications are reservations and 144 percent when twenty percent of the applications
are reservations. The large overhead when there are 20 percent reservations is due
to the SDSC workloads that have very high overheads. This is most likely caused by
the inaccuracy of the maximum wait times used when scheduling the SDSC work-
loads. Recall that the original SDSC workloads do not contain maximum run times
so we computed them by finding the longest running application in each queue and
using that run time as the maximum run time for all applications in that queue.

Figure 6.3 and 6.4 also show that increasing the percent of applications that are
reservations in the CTC workload has roughly the same impact whether FCFS or
LWF queue ordering is used. This is also true for the SDSC95 workload, but there is
a larger increase in wait time with LWF queue ordering for the other two workloads.
There is a small increase in wait time for the SDSC96 workload, but the increase in
wait time doubles for LWF queue ordering for the ANL workload when compared
to FCFS ordering.

These figures can also be used to analyze whether reservations have a larger
impact on wait time when backfilling is used or not. The figures show that the wait
time increases twice as much when backfilling is not performed. This also occurs
for the other workloads, with the ANL increase in wait time doubling when not

backfilling, and slightly smaller increases for the SDSC workloads.
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Next, we use our data to analyze what happens to the mean wait times when the
load on the machines increase (fewer nodes are used). We find that in all but one
case, the wait times increase as the number of nodes decrease. There is a relatively
linear increase in wait time for the C'TC and SDSC95 workloads as the number of
nodes decreases but superlinear increases for the ANL and SDSC96 workloads.

One interesting effect is shown in Figure 6.5. The first graph in the figure shows
the mean wait time for the ANL workload when FCFS queue ordering is used with
backfilling and maximum run times. As one can see at 48 nodes, the longest mean
wait time occurs when there are no reservations and the shortest mean wait time
is when there are twenty percent reservations. This can be explained by examining
the large spike in the second graph in the figure at 48 nodes which shows that
reservations are not being satisfied until far after their requested times. When the
offered load to the scheduler is very high, reservation request are being satisfied far
in the future, leaving more room for backfilling applications from the queue; and if

there are fewer applications in the queue, they will have shorter waiting times.

6.2.3 Offset from Requested Reservations

In this section, we examine the difference between the requested reservation times
of the applications in our workload and the times they receive their reservations.
We again assume that reservations cannot be made at a time that would delay the
startup of any applications in the queue at the time the reservation is made. The
performance is what is expected in general: the offset is larger when fewer nodes are
used and when there are more reservations. There are some cases where the offset
increases superlinearly as we saw in Figure 6.5. This occurs with the ANL workload

for all numbers of reservations when backfilling is performed and when 20% of the
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applications in the SDSC96 workload are changed to reservations. For the other
cases, there is a relatively steady increase in the difference from requested reservation
time as the number of nodes decreases as shown in Figure 6.6 and Figure 6.7.

The figures also show that the difference between requested reservation times and
actual reservation times is larger when FCFS queue ordering is used. This holds
true for the other workloads as well. A final observation is that our data shows
that when backfilling is performed, the difference between requested reservation
time and actual reservation time is larger, for the SDSC workloads, is the same for
the CTC workload, and is smaller for the ANL workload. One can see that this
pattern follows the utilization or offered load on the machines: the SDSC workloads
have the lowest utilization, and the ANL workload the highest. This indicates that
backfilling results in reservations closer to their requested reservations only when

there are sufficient applications available for backfilling.

6.2.4 Effect of Application Priority

In this section, we examine the effects on mean wait time and the mean difference
between reservation time and requested reservation time when queued applications
are not given priority over all reserved applications. We accomplish this by giving
zero, fifty, or one-hundred percent of queued applications priority over a reserved
application when a reservation request is being made (not delaying zero, fifty, or one-
hundred percent of queued applications when a reservation is made). This data for
FCFS queue ordering and backfilling for the ANL workload is shown in Figure 6.8.

The data in the figure shows that there is a significant impact on both wait
time and offset from requested reservation time when the number of queued appli-

cations that can be delayed by reservations is varied. As expected, if more queued
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applications can be delayed when a reservation request arrives, then the wait times
are generally longer and the offsets are smaller. On average for the data shown in
the figure, decreasing the percent of queued applications with priority from 100 to
50 percent increases mean wait time by 8 percent and decreases mean offset from
requested reservation time by 44 percent. Decreasing the percent of queued appli-
cation with priority from 100 to 0 percent increases mean wait time by 36 percent
and decreases mean offset by 97 percent. These results for the change in the differ-
ence between reservation time and requested reservation time are representative of
our data: as fewer queued applications have priority, the reservations are closer to
their requested reservations. There is also a trend that when more queued applica-
tions have priority, the mean wait time decreases. This does not occur in all cases,
and when it does not occur, the increase in wait time is small. In particular, these
small increases in wait time when more queued applications have priority occur most

frequently for the ANL workload, the workload with the highest offered load.

6.3 Restartable Applications

This section describes and evaluates our techniques for performing reservations as-
suming that running applications can be terminated and restarted at a later time.
If we make this assumption, we can use run-time predictions other than maximum
run times and this may allow us to improve scheduling performance. We use our
run-time prediction technique with the template sets derived in Chapter 5 and eval-
uate several options for the scheduling algorithm. First, we evaluate different ways
to select which applications to terminate if the scheduler needs nodes to satisfy a

reservation. Second, we determine if reservations that must be satisfied in the near
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future should be considered when starting queued applications. Third, we compare
the scheduling performance when applications can be restarted to when they can-
not. In this section, we assume that reservations cannot be made at times that will

delay the startup of applications in the queues.

6.3.1 Selecting Applications for Termination

There are many possible ways to select which running applications that came from a
queue should be terminated to allow a reservation to be satisfied. We choose a rather
simple technique where the scheduler orders running applications from queues in a
list based on some cost. The applications are then terminated in increasing order of
cost until enough nodes are available for the reservation to be satisfied.

We use the equation aNT, + bNTy + c¢R to determine the cost of terminating
each application. In the equation, a, b, and ¢ are constants, N is the number
of nodes being used by the application, 7}, is the amount of time the application
has executed, T is the amount of time the scheduler expects the application will
continue to execute, and R is the number of times the application has been restarted.
The motivation behind this equation is that increasing the constant a will increase
the cost of terminating an application that has performed a large amount of work
that would be lost, decreasing b below zero will decrease the cost of terminating the
application if it still has a large amount of work to do, and increasing ¢ will decrease
the number of times any particular application is restarted.

For these experiments, we assume that the scheduler considers reservations when
deciding which applications from the queue to start and that applications in the
queue have priority over reservations when reservations are made. We performed

simulations using only the ANL workload and 80 nodes due to time constraints.
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Our first observation from our experiments is that varying the constant ¢ between
0 and 600 has a very small impact on the number applications that are restarted.
Therefore, the rest of the results we present assume that ¢ = 0.

We vary the constants a and b and set ¢ to zero to determine the optimal values
for @ and b. We choose a and b such that @ — b = 1.0 and vary a between 0.0 and
1.0 in increments of 0.1. These values allow us to perform experiments varying the
percentage of the termination cost associated with the amount of work performed
from zero to one hundred percent with the amount of work yet to do contributing
the remaining percent. The best values are shown in Tables 6.1 and 6.2. The tables
show that the best values to use for the constants vary by the scheduling algorithm
and if the mean wait time or mean difference from requested reservation time is being
optimized. However, there are several trends that can be seen in the data. First, a is
more positive than b is negative. This indicates that the amount of work done is the
most important factor to consider when selecting which applications to terminate.
Second, in over half of the cases both mean wait time and the mean difference
in reservation is optimized with the same values of @ and b. Third, from other
simulations results, we observe that the mean wait times do not change smoothly

as, say, a is increased from 0.0 to 1.0.

6.3.2 Considering Reservations While Scheduling

In this subsection we address the question of whether reservations should be con-
sidered when starting applications from a queue or not. If reservations are not
considered, an application at the head of the queue would be started even if it
would almost certainly have to be terminated to make nodes available for a reserva-

tion. If reservations are considered, the application at the head of the queue would
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Table 6.1: Constants that minimize wait time when reservations are considered when
starting queued applications.

Mean Diff
Percentage Mean Wait | From Requested
Queue of Time Reservation
Ordering | Backfill | Reservations | «a b (minutes) (minutes)

FCFS no 10 0.6 | -0.4 714.26 279.62
FCFS no 20 0.8 |-0.2 1109.97 445.14
FCFS yes 10 0.8 ]-0.2 183.80 252.25
FCFS yes 20 0.9 | -0.1 194.30 331.45
LWF no 10 0.6 | -0.4 89.55 177.32
LWF no 20 0.9 |-0.1 97.80 242.57

Table 6.2: Constants that minimize the difference between reservation time and
requested reservation time when reservations are considered when starting queued

applications.
Mean Diff
Percentage Mean Wait | From Requested
Queue of Time Reservation
Ordering | Backfill | Reservations | «a b (minutes) (minutes)

FCFS no 10 0.9 |-0.1 722.09 265.76
FCFS no 20 1.0 | 0.0 1110.11 399.96
FCFS yes 10 0.8 ]-0.2 183.80 252.25
FCFS yes 20 0.9 |-0.1 194.30 331.45
LWF no 10 0.6 | -0.4 89.55 177.32
LWF no 20 0.9 | -0.1 97.80 242.57
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Table 6.3: Constants that minimize wait time when reservations are not considered
when starting queued applications.

Mean Diff
Percentage Mean Wait | From Requested
Queue of Time Reservation
Ordering | Backfill | Reservations | «a b (minutes) (minutes)

FCFS no 10 0.9 | -0.1 755.53 314.03
FCFS no 20 0.9 | -0.1 1109.16 389.50
FCFS yes 10 0.8 |-0.2 252.91 264.04
FCFS yes 20 0.7 1 -0.3 480.09 370.49
LWF no 10 1.0 | 0.0 111.11 181.97
LWF no 20 0.9 | -0.1 211.89 250.71

not be started, but perhaps an application later in the queue would be because it
could execute before the nodes are needed by a reservation. Which technique to use
depends on the accuracy of the run-time predictions. If the run-time predictions are
not very accurate, the scheduler will start applications that have to be terminated
and not start applications that could have executed to completion. These mistakes
would increase the average wait time of applications.

Some of our simulation results are shown in Tables 6.3 and 6.4. If we compare
this data to the data in the previous subsection, one can see that both mean wait
time and the mean difference between reservation time and requested reservation
time increase. The mean wait times increase by 22 percent on average and the
mean offset from requested reservation time increases by only 1 percent. These
results show that our run-time predictions are accurate enough that reservations
should be considered when deciding which applications from the queue should be

started.
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Table 6.4: Constants that minimize the difference between reservation time and re-
quested reservation time when reservations are not considered when starting queued

applications.
Mean Diff
Percentage Mean Wait | From Requested
Queue of Time Reservation
Ordering | Backfill | Reservations | «a b (minutes) (minutes)

FCFS no 10 1.0 | 0.0 770.65 263.56
FCFS no 20 1.0 | 0.0 1165.79 382.78
FCFS yes 10 0.8 |-0.2 252.91 264.04
FCFS yes 20 1.0 | 0.0 686.67 351.91
LWF no 10 1.0 | 0.0 111.11 181.97
LWF no 20 0.8 |-0.2 238.98 242.88

6.3.3 Comparison to Nonrestartable Techniques

The previous two subsections present performance data for combining queuing sched-
uling and reservations when running applications can be terminated and restarted.
We will now compare this performance to the scheduling performance when ap-
plications cannot be terminated and restarted. Table 6.5 presents the scheduling
performance for simulating the ANL workload on 80 nodes when applications cannot
be restarted and applications from the queue have priority over reservations when
reservations are performed (the same assumption we make when applications can
be restarted). Comparing this data to the data in Table 6.1 shows that if applica-
tions can be terminated and restarted, the mean wait time decreases by 8 percent
and the mean difference from requested reservation time decreases by 124 percent.
This shows that there is a performance benefit if we assume that applications are

restartable, particularly in the mean difference from requested reservation time.
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Table 6.5: Scheduling performance when applications cannot be terminated.

Mean Difference
Percentage | Mean Wait | From Requested
Queue of Time Reservation
Ordering | Backfilling | Reservations | (minutes) (minutes)
FCFS no 10 650.55 570.08
FCFS no 20 1348.20 1010.41
FCFS yes 10 170.05 620.55
FCFS yes 20 199.91 793.41
LWF no 10 87.95 428.59
LWF no 20 123.60 449.97

6.4 Related Work

Techniques for combining reservations from users with queuing scheduling is a rel-
atively new area of research. User-level reservations are currently being added to
the Portable Batch System (PBS) scheduler [57] and most scheduling systems allow
administrators to assign nodes to certain users for certain times. The problem with

this second technique is that it requires a human administrator in the process.

6.5 Summary

In this section we examine the performance of several different techniques for com-
bining queuing scheduling with reservations. First, we examine techniques when
applications cannot be restarted. We find that this forces us to use maximum run
times for run-time predictions and techniques similar to backfilling. We find that
forcing users to request reservations at least an hour or two ahead of time does
not have any effect on scheduling performance, so using this constraint is a policy

decision. We also find that supporting reservations does increase the wait times
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of applications in the queue by 24 percent when 10 percent of the applications are
reservations and by 144 percent when 20 percent of the applications are reservations.
The large overhead when 20 percent of the applications are reservations is due to
the SDSC workloads that have very large mean wait times. We show that if we
decrease the percent of queued applications that cannot be delayed by a reservation
from 100 to 50 then the mean wait time increases by an average of 8 percent and
the mean difference from the requested reservation time decreases by 44 percent. If
we decrease the percent of queued applications with priority from 100 to 0 percent
then the mean wait time increases by 35 percent and the mean difference decreases
by 97 percent.

Second, we evaluate scheduling techniques that assume that applications can
be terminated and restarted at a later time. We use an equation to determine
the cost of terminating each running application and use these costs when picking
applications to terminate. We find that the cost should largely be determined by
the amount of time the application has executed and the number of nodes it has
used, but a prediction on the amount of time the execution has left to run should
also be considered. Our data shows that reservations that have been made should
be considered when determining which applications from the queue to start. Finally,
if we assume that applications can be restarted and therefore run-time predictions
other than maximum run-times can be used, the mean wait time is decreased by 8
percent on average and the mean difference between the requested reservation times
and the actual reservation times decreases by 124 percent.

To summarize further, we find that in our environment, the best scheduling

performance when combining queuing scheduling with reservations is achieved when:

e There are no constraints on when users can ask for reservations,
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backfilling of queued applications is supported,

applications are restartable,

run-time predictions more accurate then maximum run times are used, and

reservations are considered when starting queued applications.

6.6 Future Work

There are several areas of future work that could be explored. First, more com-
plicated techniques could be used to choose which applications to terminate when
nodes are needed for reservations. Second, we could examine different scheduling
algorithms. We saw in Chapter 5 that using more accurate run-time predictions in
the scheduling algorithms we considered did not not always lead to better schedules.
This same effect may occur here. Third, we could use the scheduling algorithm for
applications in the queue when determining when a reservation can be made. We
could allow reservations to be made on or after the time the application would run

if it was submitted to the queue.



Chapter 7

Metacomputing Directory Service

High-performance distributed computing often requires careful selection and con-
figuration of computers, networks, application protocols, and algorithms. These
requirements do not arise in traditional distributed computing, where configuration
problems can typically be avoided by the use of standard default protocols, inter-
faces, and so on. The situation is also quite different in traditional high-performance
computing, where systems are usually homogeneous and hence can be configured
manually. But in high-performance distributed computing, neither defaults nor
manual configuration is acceptable. Defaults often do not result in acceptable per-
formance, and manual configuration requires low-level knowledge of remote systems
that an average programmer does not possess. We need an information-rich ap-
proach to configuration in which decisions are made (whether at compile-time, link-
time, or run-time) based upon information about the structure and state of the
system on which a program is to run.

An example from the I-WAY networking experiment illustrates some of the dif-

112
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ficulties associated with the configuration of high-performance distributed systems.
The I-WAY was composed of massively parallel computers, workstations, archival
storage systems, and visualization devices [15]. These resources were interconnected
by both the Internet and a dedicated 155 Mb/sec IP over ATM network. In this en-
vironment, applications might run on a single or multiple parallel computers, of the
same or different types. An optimal communication configuration for a particular
situation might use vendor-optimized communication protocols within a computer
but TCP/IP between computers over an ATM network (if available). A significant

amount of information must be available to select such configurations, for example:

e What are the network interfaces (i.e., IP addresses) for the ATM network and

Internet?

e What is the raw bandwidth of the ATM network and the Internet, and which

is higher?
e Is the ATM network currently available?

e Between which pairs of nodes can we use vendor protocols to access fast in-

ternal networks?

e Between which pairs of nodes must we use TCP/IP?

Additional information is required if we use a resource location service to select an
“optimal” set of resources from among the machines available on the F-WAY at a
given time.

In our experience, such configuration decisions are not difficult ¢f the right in-

formation is available. Until now, however, this information has not been easily
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available, and this lack of access has hindered application optimization. Further-
more, making this information available in a useful fashion is a nontrivial problem:
the information required to configure high-performance distributed systems is di-
verse in scope, dynamic in value, distributed across the network, and detailed in
nature.

In this chapter, we propose an approach to the design of high-performance dis-
tributed systems that addresses this need for efficient and scalable access to diverse,
dynamic, and distributed information about the structure and state of resources.
The core of this approach is the definition and implementation of a Metacomputing
Directory Service (MDS) that provides a uniform interface to diverse information
sources. We show how a simple data representation and application programming
interface (API) based on the Lightweight Directory Access Protocol (LDAP) [40]
meet requirements for uniformity, extensibility, and distributed maintenance. We
introduce a data model suitable for distributed computing applications and show
how this model is able to represent computers and networks of interest. We also
present novel implementation techniques for this service that address the unique
requirements of high-performance applications. Finally, we use examples from the
Globus distributed computing toolkit to show how MDS data can be used to guide
configuration decisions with realistic settings. We expect these techniques to be
equally useful in other systems that support computing in distributed environments,
such as Legion [34], NEOS [14], NetSolve [10], Condor [46], Nimrod [1], PRM [50],
AppLeS [4], and heterogeneous implementations of MPT [24].

The principal contributions of this chapter are

e a new architecture for high-performance distributed computing systems, based

upon an information service called the Metacomputing Directory Service;
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e a design for this directory service, addressing issues of data representation,

data model, and implementation;

e a data model able to represent the network structures commonly used by
distributed computing systems, including various types of supercomputers;

and

e a demonstration of the use of the information provided by MDS to guide
resource and communication configuration within a distributed computing

toolkit.

I helped to design the directory service and define the data model.

The rest of this chapter is organized as follows. In Section 7.1, we explain the
requirements that a distributed computing information infrastructure must satisfy,
and we propose MDS in response to these requirements. We then describe the
representation (Section 7.2), the data model (Section 7.3), and the implementation
(Section 7.4) of MDS. In Section 7.5, we demonstrate how MDS information is used
within Globus. We conclude in Section 7.6 with suggestions for future research

efforts.

7.1 Designing a Metacomputing Directory Ser-
vice

The problem of organizing and providing access to information is a familiar one in
computer science, and there are many potential approaches to the problem, ranging

from database systems to the Simple Network Management Protocol (SNMP). The
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appropriate solution depends on the ways in which the information is produced,

maintained, accessed, and used.

7.1.1 Requirements

Following are the requirements that shaped our design of an information infras-
tructure for distributed computing applications. Some of these requirements can
be expressed in quantitative terms (e.g., scalability, performance); others are more

subjective (e.g., expressiveness, deployability).

Performance. The applications of interest to us frequently operate on a large scale
(e.g., hundreds of processors) and have demanding performance requirements.
Hence, an information infrastructure must permit rapid access to frequently
used configuration information. It is not acceptable to contact a server for

every item: caching is required.

Scalability and cost. The infrastructure must scale to large numbers of compo-
nents and permit concurrent access by many entities. At the same time, its
organization must permit easy discovery of information. The human and re-
source costs (CPU cycles, disk space, network bandwidth) of creating and
maintaining information must also be low, both at individual sites and in

total.

Uniformity. Our goal is to simplify the development of tools and applications that
use data to guide configuration decisions. We require a uniform data model
as well as an application programming interface (API) for common operations

on the data represented via that model. One aspect of this uniformity is a
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standard representation for data about common resources, such as processors

and networks.

Expressiveness. We require a data model rich enough to represent relevant struc-
ture within distributed computing systems. A particular challenge is represent-
ing characteristics that span organizations, for example network bandwidth

between sites.

Extensibility. Any data model that we define will be incomplete. Hence, the abil-
ity to incorporate additional information is important. For example, an ap-
plication can use this facility to record specific information about its behavior

(observed bandwidth, memory requirements) for use in subsequent runs.

Multiple information sources. The information that we require may be gener-
ated by many different sources. Consequently, an information infrastructure

must integrate information from multiple sources.

Dynamic data. Some of the data required by applications is highly dynamic: for
example, network availability or load. An information infrastructure must be

able to make this data available in a timely fashion.

Flexible access. We require the ability to both read and update data contained
within the information infrastructure. Some form of search capability is also

required, to assist in locating stored data.

Security. It is important to control who is allowed to update configuration data.

Some sites will also want to control access.

Deployability. An information infrastructure is useful only if is broadly deployed.
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In the current case, we require techniques that can be installed and maintained

easily at many sites.

Decentralized maintenance. It must be possible to delegate the task of creating
and maintaining information about resources to the sites at which resources
are located. This delegation is important for both scalability and security

reasoIns.

7.1.2 A Metacomputing Directory Service

Our analysis of requirements and existing systems leads us to define what we call
the Metacomputing Directory Service (MDS). This system consists of three distinct

components:

1. Representation and data access: The directory structure, data represen-

tation, and API defined by LDAP.

2. Data model: A data model that is able to encode the types of resources

found in high-performance distributed computing systems.

3. Implementation: A set of implementation strategies designed to meet re-

quirements for performance, multiple data sources, and scalability.

We provide more details on each of these components in the following sections.
Figure 7.1 illustrates the structure of MDS and its role in a high-performance
distributed computing system. An application running in a distributed computing
environment can access information about system structure and state through a
uniform API. This information is obtained through the MDS client library, which

may access a variety of services and data sources when servicing a query.
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Figure 7.1: Overview of the architecture of the Metacomputing Directory Service.

7.2 Representation

The MDS design adopts the data representations and API defined by the LDAP
directory service. This choice is driven by several considerations. Not only is the
LDAP data representation extensible and flexible, but LDAP is beginning to play
a significant role in Web-based systems. Hence, we can expect wide deployment of
LDAP information services, familiarity with LDAP data formats and programming,
and the existence of LDAP directories with useful information. Note that the use
of LDAP representations and API does not constrain us to use standard LDAP im-
plementations. As we explain in Section 7.4, the requirements of high-performance
distributed computing applications require alternative implementation techniques.
However, LDAP provides an attractive interface on which we can base our imple-
mentation. LDAP also provides a mechanism to restrict the types of operations that
can be performed on data, which helps to address our security requirements.

In the rest of this section, we talk about the “MDS representation,” although this
representation comes directly from LDAP (which in turn “borrows” its representa-
tion from X.500 [47]). In this representation, related information is organized into
well-defined collections, called entries. MDS contains many entries, each represent-

ing an instance of some type of object, such as an organization, person, network, or
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computer. Information about an entry is represented by one or more attributes, each
consisting of a name and a corresponding value. The attributes that are associated
with a particular entry are determined by the type of object the entry represents.
This type information, which is encoded within the MDS data model, is encoded in
MDS by associating an object class with each entry. We now describe how entries

are named and then, how attributes are associated with objects.

7.2.1 Naming MDS Entries

Each MDS entry is identified by a unique name, called its distinguished name. To
simplify the process of locating an MDS entry, entries are organized to form a
hierarchical, tree-structured name space called a directory information tree (DIT).
The distinguished name for an entry is constructed by specifying the entries on the
path from the DIT root to the entry being named.

Each component of the path that forms the distinguished name must identify a
specific DIT entry. To enable this, we require that, for any DIT entry, the children
of that entry must have at least one attribute, specified a priori, whose value dis-
tinguishes it from its siblings. (The X.500 representation actually allows more than
one attribute to be used to disambiguate names.) Any entry can then be uniquely
named by the list of attribute names and values that identify its ancestors up to the

root of the DIT. For example, consider the following MDS distinguished name:
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< hn = dark.mcs.anl.gov,
ou = MCS,
o = Argonne National Laboratory,
o = Globus,
c =1US >

The components of the distinguished name are listed in little endian order, with the
component corresponding to the root of the DIT listed last. Within a distinguished
name, abbreviated attribute names are typically used. Thus, in this example, the
names of the distinguishing attributes are: host name (hn), organizational unit
(ou), organization (o), and country (c). Thus, a country entry is at the root of the
DIT, while host entries are located beneath the organizational unit level of the DIT
(see Figure 7.2). In addition to the conventional set of country and organizational
entries (US, ANL, USC, etc.), we incorporate an entry for a pseudo-organization
named “Globus,” so that the distinguished names that we define do not clash with

those defined for other purposes.

7.2.2 Object Classes

Each DIT entry has a user-defined type, called its object class. (LDAP defines a
set of standard object class definitions, which can be extended for a particular site.)
The object class of an entry defines which attributes are associated with that entry
and what type of values those attributes may contain. For example, Figure 7.3
shows the definition of the object classes GlobusHost and GlobusResource, and
Figure 7.4 shows the values associated with a particular host. The object class

definition consists of three parts: a parent class, a list of required attributes, and a
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Figure 7.2: A subset of the DIT defined by MDS, showing the organizational nodes
for Globus, ANL, and USC; the organizational units ISI and MCS; and a number
of people, hosts, and networks.

list of optional attributes.

The SUBCLASS section of the object class definition enables a simple inheritance
mechanism, allowing an object class to be defined in terms of an extension of an
existing object class. The MUST CONTAIN and MAY CONTAIN sections specify the
required and optional attributes found in an entry of this object class. Following
each attribute name is the type of the attribute value. While the set of attribute
types is extensible, a core set has been defined, including case-insensitive strings
(cis) and distinguished names (dn).

In Figure 7.3, GlobusHost inherits from the object class GlobusResource. This
means that a GLobusHost entry (i.e., an entry of type GlobusHost) contains all of the
attributes required by the GlobusResource class, as well as the attributes defined
within its own MUST CONTAIN section. In Figure 7.4, the administrator attribute is
inherited from GlobusResource. A GlobusHost entry may also optionally contain
the attributes from both its parent’s and its own MAY CONTAIN section.

Notice that the administrator attribute in Figure 7.4 contains a distinguished
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GlobusHost OBJECT CLASS GlobusResource 0BJECT CLASS
SUBCLASS OF GlobusResource SUBCLASS OF GlobusTop
MUST CONTAIN { MUST CONTAIN {

hostName :: cis, administrator :: dn
type :: cis, }
vendor 11 cis, MAY CONTAIN {
model :: cis, manager :: dn,
0Stype 11 cis, provider :: dn,
OSversion :: cis technician :: dn,
} description  :: cis,
MAY CONTAIN { documentation :: cis
networkNode :: dn, }
totalMemory 1t cis,
totalSwap 1t cis,
dataCache :: cis,
instructionCache :: cis
}

Figure 7.3: Simplified versions of the MDS object classes GlobusHost and Globus-
Resource.

name. This distinguished name acts as a pointer, linking the host entry to the
person entry representing the administrator. One must be careful not to confuse
this link, which is part of an entry, with the relationships represented by the DIT,
which are not entry attributes. The DIT should be thought of as a separate structure
used to organize an arbitrary collection of entries and, in particular, to enable the
distribution of these entries over multiple physical sites. Using distinguished names
as attribute values enables one to construct more complex relationships than the
trees found in the DIT. The ability to define more complex structures is essential
for our purposes, since many distributed computing structures are most naturally

represented as graphs.
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dn: hn=dark.mcs.anl.gov, ou=MCS,
o=Argonne National Laboratory, o=Globus, c=US
objectclass: GlobusHost
objectclass: GlobusResource
administrator: cn=John Smith, ou=MCS,
o=Argonne National Laboratory, o=Globus, c=US

hostName: dark.mcs.anl.gov
type: sparc

vendor: Sun

model: SPARCstation-10
O0Stype: Sun0S

OSversion: 5.5.1

Figure 7.4: Sample data representation for an MDS computer

7.3 Data Model

To use the MDS representation for a particular purpose, we must define a data
model in which information of interest can be maintained. This data model must
specify both a DI'T hierarchy and the object classes used to define each type of entry.

In its upper levels, the DIT used by MDS (see Figure 7.2) is typical for LDAP
directory structures, looking similar to the organization used for multinational cor-
porations. The root node is of object class country, under which we place first
the organization entry representing Globus and then the organization and organi-
zational unit (i.e., division or department) entries. Entries representing people and
computers are placed under the appropriate organizational units.

The representation of computers and networks is central to the effective use of

MDS, and so we focus on this issue in this section.
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7.3.1 Representing Networks and Computers

We adopt the framework for representing networks introduced in RFC 1609 [47]
as the starting point for the representation used in MDS. However, the RFC 1609
framework provides a network-centric view in which computers are accessible only
via the networks to which they are connected. We require a representation of net-

works and computers that allows us to answer questions such as
e Are computers A and B on the same local area network?
e What is the latency between computers C and D?
e What protocols are available to communicate between computers E and F?

In answering these questions, we often require access to information about networks,
but questions are posed most often from the perspective of the computational re-
source. That is, they are computer-centric questions. Our data model reflects this
perspective.

A high-level view of the DIT structure used in MDS is shown in Figure 7.2.
As indicated in this figure, both people and hosts are immediate children of the
organizations in which they are located. For example, the distinguished name

< hn=dark.mcs.anl.gov,
ou=MCS, o=Argonne National Laboratory,

o=Globus, c=US >

identifies a computer administered by the Mathematics and Computer Science (MCS)
Division at Argonne National Laboratory.
Communication networks are also explicitly represented in the DIT as children

of an organization. For example, the distinguished name
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< nn=mcs-lan,
ou=MCS, o=Argonne National Laboratory,

o=Globus, c=US >

represents the local area network managed by MCS. This distinguished name iden-
tifies an instance of a GlobusNetwork object. The attribute values of a Globus-
Network object provides information about the physical network link, such as the
link protocol (e.g., ATM or Ethernet), network topology (e.g., bus or ring type), and
physical media (e.g., copper or fiber). As we shall soon see, logical information, such
as the network protocol being used, is not specified in the GlobusNetwork object but
is associated with a GlobusNetworkImage object. Networks that span organizations
can be represented by placing the GlobusNetwork object higher in the DIT.
Networks and hosts are related to one another via GlobusNetworkInterface
objects: hosts contain network interfaces, and network interfaces are attached to
networks. A network interface object represents the physical characteristics of a
network interface (such as interface speed) and the hardware network address (e.g.
the 48-bit Ethernet address in the case of Ethernet). Network interfaces appear
under hosts in the DIT, while a network interface is associated with a network
via an attribute whose value is a distinguished name pointing to a GlobusNetwork
object. A reverse link exists from the GlobusNetwork object back to the interface.
To illustrate the relationship between GlobusHost, GlobusNetwork, and Glo-
busNetworkInterface objects, we consider the configuration shown in Figure 7.5.
This configuration consists of an IBM SP parallel computer and two workstations,
all associated with MCS. The SP has two networks: an internal high-speed switch

and an Ethernet; the workstations are connected only to an Ethernet. Although the
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Figure 7.5: A configuration comprising two networks and N+2 computers.

SP Ethernet and the workstation Ethernet are connected via a router, we choose to
represent them as a single network. An alternative, higher-fidelity MDS represen-
tation would capture the fact that there are two interconnected Ethernet networks.

The MDS representation for Figure 7.5 is shown in Figure 7.6. Each host and
network in the configuration appear in the DIT directly under the entry representing
MCS at Argonne National Laboratory. Note that individual SP nodes are children
of MCS. This somewhat unexpected representation is a consequence of the SP archi-
tecture: each node is a fully featured workstation, potentially allowing login. Thus,
the MDS representation captures the dual nature of the SP as a parallel computer
(via the switch network object) and as a collection of workstations.

As discussed above, the GlobusNetworkInterface objects are located in the
DIT under the GlobusHost objects. Note that a GlobusHost can have more than
one network interface entry below it. Each entry corresponds to a different physical

network connection. In the case of an SP, each node has at least two network
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Figure 7.6: The MDS representation of the configuration depicted in Figure 7.5,
showing host (HN), network (NN), and network interface (NIN) objects. The dashed

lines correspond to “pointers” represented by distinguished name attributes.
interfaces: one to the high-speed switch and one to an Ethernet. Finally, we see that

distinguished names are used to complete the representation, linking the network

interface and network object together.

7.3.2 Logical Views and Images

At this point, we have described the representation of a physical network: essen-
tially link-level aspects of the network and characteristics of network interface cards
and the hosts they plug into. However, a physical network may support several
“logical” views, and we may need to associate additional information with these
logical views. For example, a single network might be accessible via several different
protocol stacks: 1P, Novell IPX, or vendor-provided libraries such as MPI. Associ-
ated with each of these protocols can be distinct network interface and performance

information. Additionally, a “partition” might be created containing a subset of
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available computers; scheduling information can be associated with this object.

The RFC 1609 framework introduces the valuable concept of images as a mecha-
nism for representing multiple logical views of the same physical network. We apply
the same concept in our data model. Where physical networks are represented
by GlobusHost, GlobusNetwork, and GlobusNetworkInterface object classes,
network images are represented by GlobusHostImage, GlobusNetworkImage, and
GlobusNetworkInterfaceImage object classes. Each image object class contains
new information associated with the logical view, as well as a distinguished name
pointing to its relevant physical object. In addition, a physical object has distin-
guished name pointers to all of the images that refer to it. For example, one may use
both IP and IPX protocols over a single Ethernet interface card. We would represent
this in MDS by creating two GlobusNetworkInterfaceImage objects. One image
object would represent the IP network and contain the IP address of the interface, as
well as a pointer back to the object class representing the Ethernet card. The second
image object would contain the IPX address, as well as a distinguished name point-
ing back to the same entry for the Ethernet card. The GlobusNetworkInterface
object would include the distinguished names of both interface images.

The structure of network images parallels that of the corresponding physical
networks, with the exception that not all network interfaces attached to a host need
appear in an image. To see why, consider the case of the IBM SP. One might con-
struct a network image to represent the “parallel computer” view of the machine in
which IBM’s proprietary message-passing library is used for communication. Since
this protocol cannot be used over the Ethernet, this image of the network will not
contain images representing the Ethernet card. Note that we can also produce a

network image of the SP representing the use of IP protocols. This view may include
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images of both the switch and Ethernet network interfaces.

7.3.3 Questions Revisited

At this stage we have gone quite deeply into the representation of computers and
networks but have strayed rather far from the issue that motivated the MDS design,
namely, the configuration of high-performance distributed computations. To see
how MDS information can be used, let us revisit the questions posed at the start of

this chapter with respect to the use of multiple computers on the I-WAY:

o What are the network interfaces (i.e., IP addresses) for the ATM network
and Internet? A host’s IP address on the ATM network can be found by
looking for a GlobusNetworkInterface that is pointing to a GlobusNetwork
with a link protocol attribute value of ATM. From the interface, we find the
GlobusNetworkInterfaceImage representing an I[P network, and the IP ad-

dress will be stored as an attribute in this object.

o What is the raw bandwidth of the ATM network and the Internet, and which is
higher? Is the ATM network currently available? The raw bandwidth of the
ATM network will be stored in the -WAY GlobusNetwork object. Information
about the availability of the ATM network can also be maintained in this

object.

o Belween which pairs of nodes can we use vendor protocols to access fast
internal networks? Belween which pairs of nodes must we use TCP/IP?
Two nodes can communicate using a vendor protocol if they both point to
GlobusHostImage objects that belong to the same GlobusNetworkImage ob-

ject.
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Note that the definition of the MDS representation, API, and data model means
that this information can be obtained via a single mechanism, regardless of the

computers on which an application actually runs.

7.4 Implementation

We have discussed how information is represented in MDS, and we have shown how
this information can be used to answer questions about system configuration. We
now turn our attention to the MDS implementation. Since our data model has
been defined completely within the LDAP framework, we could in principle adopt
the standard LDAP implementation. This implementation uses a TCP-based wire
protocol and a distributed collection of servers, where each server is responsible for
all the entries located within a complete subtree of the DIT. While this approach
is suitable for a loosely coupled, distributed environment, it has three significant

drawbacks in a high-performance environment:

e Single information provider. The LDAP implementation assumes that all
information within a DIT subtree is provided by a single information provider.
(While some LDAP servers allow alternative “backend” mechanisms for stor-
ing entries, the same backend must be used for all entries in the DIT sub-
tree.) However, restricting all attributes to the same information provider
complicates the design of the MDS data-model. For example, the IP address
associated with a network interface image can be provided by a system call,
while the network bandwidth available through that interface is provided by
a service such as the Network Weather Service (NWS) [62].
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e Client/server architecture. The LDAP implementation requires at least
one round-trip network communication for each LDAP access. Frequent MDS
accesses thus becomes prohibitively expensive. We need a mechanism by which

MDS data can be cached locally for a timely response.

e Scope of Data. The LDAP implementation assumes that any piece of infor-
mation may be used from any point in the network (within the constraints of
access control). However, a more efficient implementation of attribute update
can be obtained if one can limit the locations from which attribute values can
be accessed. The introduction of scope helps to determine which information
must be propagated to which information providers, and when information

can be safely cached.

Note that these drawbacks all relate to the LDAP implementation, not its API.
Indeed, we can adopt the LDAP API for MDS without modification. Furthermore,
for those DIT subtrees that contain information that is not adversely affected by
the above limitations, we can pass the API calls straight through to an existing
LDAP implementation. In general, however, MDS needs a specialized implementa-
tion of the LDAP API to meet the requirements for high performance and multiple
information providers.

The most basic difference between our MDS implementation and standard LDAP
implementations is that we allow information providers to be specified on a per
attribute basis. Referring to the above example, we can provide the IP address of an
interface via SNMP, the current available bandwidth via NWS. and the name of the
machine into which the interface card is connected. Additionally, these providers can

store information into MDS on a periodic basis, thus allowing refreshing of dynamic
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information. The specification of which protocol to use for each entry attribute is
stored in an object class metadata entry. Metadata entries are stored in MDS and
accessed via the LDAP protocol.

In addition to specifying the access protocol for an attribute, the MDS object
class metadata also contains a time-to-live (T'TL) for attribute values and the update
scope of the attribute. The TTL data is used to enable caching; a T'TL of 0 indicates
that the attribute value cannot be cached, while a T'TL of —1 indicates that the data
is constant. Positive TTL values determine the amount of time that the attribute
value is allowed to be provided out of the cache before refreshing.

The update scope of an attribute limits the readers of an updated attribute value.
Our initial implementation considers three update scopes: process, computation,
and global. Process scope attributes are accessible only within the same process as
the writer, whereas computation scope attributes can be accessed by any process
within a single computation, and global scope attributes can be accessed from any

node or process on a network.

7.5 MDS Applications in Globus

We review briefly some of the ways in which MDS information can be used in high-
performance distributed computing. We focus on applications within Globus. These
mechanisms include communication, authentication, resource location, resource al-
location, process management, and (in the form of MDS) information infrastructure.

The Globus toolkit is designed with the configuration problem in mind. It at-
tempts to provide, for each of its components, interfaces that allow higher-level ser-

vices to manage how low-level mechanisms are applied. As an example, we consider
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the problem referred to earlier of selecting network interfaces and communication
protocols when executing communication code within a heterogeneous network. The
Globus communication module (a library called Nexus) allows a user to specify an
application’s communication operations by using a single notation, regardless of the
target platform: either the Nexus API or some library or language layered on top
of that API. At run-time, the Nexus implementation configures a communication
structure for the application, selecting for each communication link (a Nexus con-
struct) the communication method that is to be used for communications over that
link. In making this selection for a particular pair of processors, Nexus first uses
MDS information to determine which low-level mechanisms are available between
the processors. Then, it selects from among these mechanisms, currently on the
basis of built-in rules (e.g., “ATM is better than Internet”); rules based on dynamic
information (“use ATM if current load is low”), or programmer-specified preferences
(“always use Internet because I believe it is more reliable”) can also be supported
in principle. The result is that application source code can run unchanged in many
different environments, selecting appropriate mechanisms in each case.

These method-selection mechanisms were used in the [-WAY testbed to permit
applications to run on diverse heterogeneous virtual machines [28]. For example,
on a virtual machine connecting IBM SP and SGI Challenge computers with both
ATM and Internet networks, Nexus used three different protocols (IBM proprietary
MPL on the SP, shared-memory on the Challenge, and TCP/IP or AAL5 between
computers) and selected either ATM or Internet network interfaces, depending on

network status.
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7.5.1 Related Work

Harvest [6] is a tool for gathering information from Internet repositories, build-
ing topic-specific indexes, and searching the indexes. Harvest consists of providers,
gatherers, brokers, caches, replicators, and the harvest registry service. Providers
are entities such as http and ftp servers that provide information. Gatherers collect
and extract indexing information from providers. Ideally, a gatherer will run on the
same host as a provider. The gatherer then only sends summary information to
brokers, reducing network traffic. Brokers retrieve information from gatherers and
other brokers to provide indexing and a query interface to gathered information.
The brokers produce an index for the information it received from gatherers and
providers and performs searches using this index in response to user queries. A hi-
erarchical caching system is available to maintain copies of objects from providers.
These caches are hopefully faster to access then the provider. The replicators main-
tain replicas of other components. This results in faster accesses to each component.
A final component is the harvest server registry that allows users to register infor-
mation about each gatherer, broker, cache, and replicator. The registry is used for
finding appropriate brokers and constructing new brokers and gatherers so that their
is no duplication of effort.

The CORBA trading service [2] allows the selection of service providers at run
time. This is accomplished by service providers exporting a description of the ser-
vices they provide to a trader and then allowing an application to import a service
by asking a trader for an appropriate service provider. A service is identified by an
interface to which a connection can be established, a type, and a set of properties
describing the service. A service request contains the service type, constraints on

the properties for the service, preferences used to order service offers, policies that
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describe how the search should be performed, and the service properties that should
be returned from the query.

The traders accept service offers from exporters of services and service requests
from importers of services. Traders attempt to match the service request to one
or more service offers. Traders can be linked together so that service request can
be passed to other traders until it can be satisfied or the search fails. Traders
and the links between traders have characteristics that determine how a search is
performed. These characteristics include the maximum number of traders to query
for each request, rules on which links to follow, etc.

X.500 [47] is a standardized directory system. The directory information is
maintained in Directory Service Agents (DSAs) and is organized in a Directory
Information Tree (DIT), similar to the domain name system. The top DSA is the
root, the next level consist of country DSAs, then organizations, and so on. Each
DSA holds part of the global directory and is able to find the DSA that holds any
part of the global directory by traversing the tree. Information is stored in entries
that consist of attributes and associated values. Any subtree of the directory can be
searched by specifying an attribute and value. This structure results in inefficient
global searches since all DSAs must be queried. X.500 defines a Directory Access
Protocol (DAP) to access DSAs. This protocol is based over the OSI network stack
and requires significant computational resources to use.

The Lightweight Directory Access Protocol (LDAP) [63, 39, 40] is designed to
allow access to X.500 directories without the overhead of DAP. LDAP has lower over-
head than DAP because requests are carried over TCP/IP bypassing session/trans-
port overhead, many data elements are encoded as ordinary strings, and uses a

lightweight encoding for all protocol elements. The most commonly used operations
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provided by LDAP are a bind operation for a client to connect to a LDAP server, a
search operation to search for entries, a modify operation to modify the directory,
and operations to add and delete elements. The search operation can specify many
search characteristics such as the subtree to search, how long to search, the maxi-
mum number of entries to find, the attributes to be returned for each entry, and the
filter [39] to be used to determine if an entry matches a query.

Whois++ [60] is similar to X.500 in that it represents a directory of entries (called
records) which consist of attributes and values. The Whois++ directory model does
not define a hierarchical name structure like X.500. Whois+-+ has a set of index
servers and Whois++ servers. The Whois+-+ servers contain the records and each
one is indexed by at least one index server. The index servers contain centroids for
Whois+-+ servers. A centroid consists of a list of the values that occur for each
attribute in any record in the Whois++ server. Index servers can be indexed by
other servers to produce a hierarchy where higher level index servers have a centroid
for each index server it indexes.

Clients find records in this structure by first contacting an appropriate index
server. An appropriate index server is usually the physically closest server to the
client. The client then sends a search request and the response is either records that
satisfy the search (if the query went to a Whois++ server), other index servers to
contact, or that no information was found. In the first case, the search is complete.
In the second case, the client can contact the specified index servers to continue the
search for Whois++ servers. In the third case, the client asks the index server for
the names of index servers that index it. The search can then proceed through these
higher-level servers. Whois++ is more efficient than X.500 for searching but is less

efficient for browsing since searches must be used to build lists of data.
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Reviewing these various systems, we see that each is in some way incomplete, fail-
ing to address the types of information needed to build high-performance distributed
computing systems, being too slow, or not defining an API to enable uniform access
to the service. For these reasons, we have defined our own metacomputing informa-
tion infrastructure that integrates existing systems while providing a uniform and

extensible data model, support for multiple information service providers, and a

uniform API.

7.6 Summary

We have argued that the complex, heterogeneous, and dynamic nature of high-
performance distributed computing systems requires an information-rich approach
to system configuration. In this approach, tools and applications do not rely on
defaults or programmer-supplied knowledge to make configuration choices. Instead,
they base choices on information obtained from external sources.

With the goal of enabling information-rich configuration, we have designed and
implemented a Metacomputing Directory Service. MDS is designed to provide uni-
form, efficient, and scalable access to dynamic, distributed, and diverse information
about the structure and state of resources. MDS defines a representation (based on
that of LDAP), a data model (capable of representing various parallel computers
and networks), and an implementation (which uses caching and other strategies to
meet performance requirements). Experiments conducted with the Globus toolkit
(particularly in the context of the -WAY) show that MDS information can be used

to good effect in practical situations.
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7.7 Future Work

The MDS has been deployed in our GUSTO distributed computing testbed and
we are extending additional Globus components to use MDS information for con-
figuration purposes. The MDS is being adopted as a standard information service
for metacomputing systems and the data representations are changing slightly to
accommodate this.

Other directions for immediate investigation include expanding the set of in-
formation sources supported, evaluating performance issues in applications, and
developing optimized implementations for common operations. In the longer term,
we are interested in more sophisticated applications (e.g., source routing, resource
scheduling) and in the recording and use of application-generated performance met-
rics. Another application for MDS information that we are investigating is resource
location [59]. A “resource broker” is basically a process that supports specialized
searches against MDS information. Rather than incorporate these search capabilities
in MDS servers, we plan to construct resource brokers that construct and maintain
the necessary indexes, querying MDS periodically to obtain up-to-date information.
We are also investigating techniques for replicating and distributing the data in the
information service. The goal of this effort is to increase both the performance and
availability of the information service. Finally, we are investigating support for re-
ferral to other information services. A referral service allows our information service

to retrieve requested information from another information service.



Chapter 8

Resource Management Interface

This chapter describes a common interface to local resource managers. An inter-
face such as this is needed by users of metacomputing systems because there are
many different local scheduling systems in use, as well as computers that do not
have schedulers at all. This common interface allows users to understand only a
single interface and be able to execute applications on many different computer sys-
tems. This interface is used in Globus and is called the Globus Resource Allocation
Manager (GRAM). A GRAM allows a remote user to start, monitor, and termi-
nate applications on a computer system. The GRAMSs provide a single interface
to for managing applications on many types of computer systems. Some examples
are single workstations, workstations scheduled by systems such as Condor [46], and
parallel computers scheduled by scheduling systems such as LoadlLeveler, EASY [44],
Maui, NQE, LSF [51], and PBS [57].

140
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Figure 8.1: GRAM Architecture.

8.1 Architecture

The GRAM architecture is shown in Figure 8.1. To execute an application through a
GRAM, a user submits an application through a GRAM client. A GRAM client can
either be written by the user using the GRAM client API or there are several GRAM
clients provided with Globus that are used as command line tools. The GRAM client
forwards the submission to a gatekeeper on the remote computer. The gatekeeper
authenticates the user, creates a job manager running under the user’s local user 1D,
and passes information about the application to the job manager. The job manager
then starts and monitors the application, communicating state changes back to the
GRAM client that started the application. When the remote application terminates,

normally or by failing, the job manager terminates as well. The enties in our system
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are:

Resource - an entity capable of running one or more processes on behalf of a user.
Client - the process that is using the resource allocation client-side API.

Job - a process or set of processes resulting from a job request. Jobs are grouped,
so any error in one job results in the mutual termination of all others in the
group. If the job is killed by the client, all processes are terminated, and the

job itself is finally terminated as well.

Job Request - a request to gatekeeper to create one or more job processes, ex-

pressed in the supplied Resource Specification Language. This request guides

e resource selection (when and where to create the job processes)
e job process creation (what job processes to create)

e job control (how the processes should execute)

Gatekeeper - a process, running as root, which begins the process of handling
allocation requests. It exists on the remote computer before any request is
submitted. When the gatekeeper receives an allocation request from a client,
it

e mutually authenticates with the client,
e maps the requester to a local user,
e starts a job manager on the local host as the local user, and

e passes the allocation arguments to the newly created job manager
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Job Manager - one job manager is created by the gatekeeper to fulfill every request
submitted to the gatekeeper. It does this by fork/exec or by communicating
with a scheduling system. It starts the job on the local system, and handles

all further communication with the client. It is made up of two components:

o Common Component - translates messages received from the gatekeeper
and client into an internal API that is implemented by the machine spe-
cific component. It also translates callback requests from the machine
specific component through the internal API into messages to the appli-

cation manager.

o Machine-Specific Component - implements the internal API in the local
environment. This includes calls to the local system, messages to the

resource monitor, and inquiries to the MDS.

Resource Monitor - monitors the local scheduling system and resources, provid-

ing estimated delay times to the job manager, as well as others.

Application Manager - manages applications running on a variety of resources
through many resource managers. As the central manager, it receives the

callback requests from the job manager, indicating a change in job status.

8.2 Scheduling Model

Our resource management interface support the following scheduling model. A user
(or resource broker acting on behalf of the user) submits a job request to a resource
manager. The user or broker may have previously used MDS inquiry functions to

identify resource managers that have resources that meet user requirements. When
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Figure 8.2: GRAM job state transitions.

submitted, the job is initially pending. The job may then undergo the state transi-
tions illustrated in Figure 8.2.

The possible job states are:

e Pending: Resources have not yet been allocated to the job.

e Failed: The user job terminated before the job processes completed success-
fully. This can occur when an error occurs in a job process or when the user

or system cancels the job.
o Active: The job has received resources and the application is running.

e Done: The job ran successfully.

We include a “Failed” state as well as having a submission request to return an
error code, because on some systems a request may not be determined to have failed
until after it is submitted.

The nature and timing of the transition from Pending to Active depends on

the local scheduler: the job request may be handled immediately, enqueued, or
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deferred until a user-specified time. Users can query MDS to determine how the
local scheduler handles requests.

The job states are encoded in the following constants, used in the gram_call-
back._allow() and gram_callback_check() functions described below. These states

can be combined using a bitwise OR operation.

e GRAM_JOB_STATE_PENDING
e GRAM_JOB_STATE_FAILED
e GRAM_JOB_STATE_ACTIVE

e GRAM_JOB_STATE_DONE

There are a large number error codes that are used to indicate why a job failed.

8.3 Resource Specification Language

The Globus RSL is a language that is used to describe the resources required for an
application. The language is based on the LDAP [40] query language and uses rela-
tions of the form (attribute op value) and logical operators to describe the resources
the application wants to use and how the application wants to use the resources. A

simple example is shown below.

& (resourceManagerContact="denali.mcs.anl.gov:8713:/C=US/
0=Globus/0O=Argonne National Laboratory/0U=Mathematics
and Computer Science Division/CN=denali.mcs.anl.gov—fork”)
(count=16)

(executable="/sandbox/wsmith/cactus-3.2/cactus_irix6")
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(arguments="/home/wsmith/cactus/neutron-128-128.par")

This request specifies the GRAM to contact (resourceManagerContact), the
number of processes to start up (count), the executable to run (executable), and
the arguments to pass to the executable (arguments). The ampersand symbol is a
logical and operator. The operator comes before the operands and operates on two
or more operands.

The RSL also contains the OR (“|”) logical operator. This operator is not
supported by lower-level Globus tools such as GRAMs, but it useful for specifying
alternatives in a higher-level tool. For example, a user could ask for 16 nodes of a

SGI Origin or 32 nodes of a Cray T3E using:

| (& (osname="1irix") (count=16)
(executable="ftp://tuva.mcs.anl.gov/sandbox/wsmith/
cactus-cactus-3.2/cactus_irix6"))
(arguments ="ftp://tuva.mcs.anl.gov/home/wsmith/
cactus/neutron-128-128.par")
(& (osname="unicos") (count=32)
(executable="ftp://tuva.mcs.anl.gov/sandbox/wsmith/

cactus-cactus-3.2/cactus_t3e"))

The URLs above beginning with "ftp” specify the location of a FTP server and
the location of files on the servers. When a GRAM sees a FTP URL as the exe-
cutable, the GRAM will contact the F'TP server, download the executable from the
sever, and then run the executable. The application itself downloads the parameter

file specified in the arguments.
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The last operator available in the RSL language is the multi-request operator,
7+7. This operator allows the user to specify several requests at once, all of which
must be satisfied. This operator is currently used by the DUROC [13] coallocation
library and is also useful to higher-level tools. The DUROC library provides support
for running a single parallel application on more than one computer. For example,
a user could run a simulation on 16 nodes of an Origin and a visualization on an

ImmersaDesk using:

+(&(resourceManagerContact="denali.mcs.anl.gov:8713:/C=US/
0=Globus/0O=Argonne National Laboratory/0U=Mathematics
and Computer Science Division/CN=denali.mcs.anl.gov—fork”)
(count=16)
(directory="/sandbox/wsmith/cactus-3.2/cactus\_irix6")
(arguments="/home/wsmith/cactus/neutron-128-128-yukon.par"))
(& (resourceManagerContact="yukon.mcs.anl.gov:8713:/C=US/
0=Globus/0O=Argonne National Laboratory/0U=Mathematics
and Computer Science Division/CN=denali.mcs.anl.gov—fork”)
(count=1)
(directory="/sandbox/wsmith/cactus-3.2/viewer")

(arguments="-host denali.mcs.anl.gov")))

Table 8.1 contains the main attributes users specify to use existing Globus re-
source management components, the operators that are used with the attributes
in the current Globus tools, what type of data is expected as the values for the
attributes, the default values for the attributes if no value is specified, and what the

attributes describe.
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The following is a modified BNF grammar for the Resource Specification Lan-
guage. Terminals appear in single quotes, eg ‘terminal’. Lexical rules are provided
for the implicit concatenation sequences in the form of conventional regular ex-
pressions; for the “implicit-concat” non-terminal rules, whitespace is not allowed
between juxtaposed non-terminals. Grammar comments are provided in square
brackets in a column to the right of the productions, eg [comment] to help relate

productions in the grammar to the terminology used in the above discussion.

specification
=> relation
=> '+’ spec-list [multi-request]
=> ’&’ spec-list [conjunct-request]

=> 7|’ spec-list [disjunct-request]

spec-list
=> ’(’ specification ’)’ spec-list

=> ’(’ specification ’)’

relation
=> ’variables’ = binding sequence [variable def’ns]

=> attribute op value-sequence [relation]

binding-sequence
=> binding binding-sequence

=> binding
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binding

=> ’(’ string-literal simple-value ’)’ [variable def’n]

attribute

=> string-literal [attribute]

op

value-sequence
=> value value-sequence

=> value

value
=> 7 (’ value-sequence ’)’

=> simple-value

simple-value
=> string-literal
=> simple-value ’#’ simple-value [concatenation]
=> implicit-concat

=> variable-reference
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variable reference
=> ’$(’ string-literal ’)’ [variable ref.]

=> ’$(’ string-literal simple-value ')’ [ref. w/ default]

implicit-concat

=> (unquoted-literal)? (implicit-concat-core)+ [implicit concat.]

implicit-concat-core
=> variable-reference

=> (variable-reference) (unquoted-literal)

string-literal
=> quoted-literal

=> unquoted-literal

quoted-literal
=> 2 ) 2 ((["’)])l() 1) )))* P
=> 2 n (([*n])l() nn )))* > oo

=> "7 c((["c]) |1 (cc))* ¢ [user delimiter]

unquoted-literal

=> ([" \t\v\n+&| ()=<>'"""#$])+ [nonspecial chars]

comment

==> (x> ((["*]) ] C*=’[")]))* %)’ [comment]
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8.4 Application Programming Interface

GRAM uses standard Globus module activation and deactivation. Before any

GRAM client functions are called, the following function must be called:
globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE)

This function returns GLOBUS_SUCCESS if the GRAM client was successfully
initialized, and the application is therefore allowed to subsequently call GRAM client
functions. Otherwise, and error code is returned, and GRAM client functions should
not be subsequently called. This function may be called multiple times.

To deactivate GRAM client, the following function must be called:
globus_module_deact ivate (GLOBUS_GRAM_CLIENT_MODULE)
This function should be called once for each time the GRAM client was activated.

int globus_gram_client_job_request(
char *resource_manager_contact,
char *description,
const int job_state_mask,
const char *callback_contact,

char **job_contact)

Request access to interactive resources at the current time. A job request is

atomic: either all of the requested processes are created, or none are created.

e resourcemanager _contact - the contact information about the resource man-
ager to which the request is submitted. This information is located in the MDS

browser, or at http://www.mcs.anl.gov/bester/cgi-bin/gusto_status.cgi
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e description - a RSL description of the requested job

e job_statemask- 0, a bitwise OR of the GLOBUS_GRAM_CLIENT_JOB_ST-
ATE_* states, or GLOBUS_GRAM_CLIENT_JOB_STATE_ALL

e callback.contact - the URL which will receive all messages about the job

e job_contact - in a successful case, this is set to a unique identifier for each

job.

e globus gram client_job_request returns GLOBUS_.GRAM_CLIENT_SUC-

CESS if successful, or an error code.

int globus_gram_client_job_status(
char *job_contact,
int *job_status,

int *failure_code)

This function returns the status of the job associated with the job contact.

e job_contact - the job_contact of the job in question.

e job_status - Set to one of GLOBUS_GRAM_CLIENT_JOB_STATE_* states
when GLOBUS_SUCCESS is returned.

e failure_code - Set to an error code when GLOBUS_FAILURE is returned.

e globus gram client_job_status returns GLOBUS_SUCCESS or GLOBUS-
_FAILURE.

int globus_gram_client_job_callback_register (
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char *job_contact,

const int job_state_mask,
const char *callback_contact,
int *job_status,

int *failure_code)

This function registers the callback_contact for job state changes.

e job_contact - the job_contact of the job in question.

e job_statemask- 0, a bitwise OR of the GLOBUS_GRAM_CLIENT_JOB_ST-
ATE_* states, or GLOBUS_GRAM_CLIENT_JOB_STATE_ALL

e callback.contact - the URL which will receive all messages about the job

e job_status - Set to one of GLOBUS_GRAM_CLIENT_JOB_STATE_* states
when GLOBUS_SUCCESS is returned.

e failure_code - Set to an error code when GLOBUS_FAILURE is returned.

e globus gram client_job_registerreturns GLOBUS_SUCCESS or GLOBUS-
_FAILURE.

int globus_gram_client_job_callback_unregister(
char *job_contact,
const char *callback_contact,
int *job_status,

int *failure_code)

This function unregisters the callback_contact from future job state changes.
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e job_contact - the job_contact of the job in question.
e callback.contact - the URL which will receive all messages about the job

e job_status - Set to one of GLOBUS_.GRAM_CLIENT_JOB_STATE_* states
when GLOBUS_SUCCESS is returned.

e failure_code - Set to an error code when GLOBUS_FAILURE is returned.

e globus gram client_job_registerreturns GLOBUS_SUCCESS or GLOBUS-
_FAILURE.

int globus_gram_client_job_cancel(

char *job_contact)

This function removes a PENDING job request, or kills all processes associated

with an ACTIVE job, releasing any associated resources.

e job_contact - the job_contact of the job in question.

e globus gram client_job_cancel returns GLOBUS_GRAM_CLIENT_SUC--

CESS if it is successful, or an error code.

int globus_gram_client_job_check(
char *resource_manager_contact,
const char *description,
const float conf_percentage,
globus_gram_client_time_t *estimate,

globus_gram_client_time_t *intervall_size)
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Note: This is not yet implemented
This function returns an estimate of the time it would take for a job of the

description provided to reach an ACTIVE state.

e resourcemanager _contact - the contact information about the resource man-
ager to which the request is submitted. This information is located in the MDS

browser, or at http://www.mcs.anl.gov/bester/cgi-bin/gusto_status.cgi
e description - a RSL description of the requested job

e conf percentage - the required confidence level in the estimate. This user-
specified number is taken by the resource manager which returns an interval.
The RM has conf_percentage confidence that the start time will occur within

this interval.

For example, if conf_percentage = .9, the RM estimates that the start time
will occur within the (estimate - interval_size/2, estimate + interval_ size/2)

with 90
e estimate - the estimated time in which the job will become ACTIVE.

e interval_size - the size of the confidence interval.

e globus gram client_job_checkreturns GLOBUS_.GRAM_CLIENT_SUCCESS

if it is successful, or an error code.

int globus_gram_client_job_start_time(
char *job_contact,
const float conf_percentage,
globus_gram_client_time_t *estimate,

globus_gram_client_time_t *interval\_size)
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Note: This is not yet implemented
This function returns the estimated start time of a PENDING job or the actual

start time of an ACTIVE job.

e job_contact - the job_contact of the job in question.

e conf percentage - the required confidence level in the estimate. This user-
specified number is taken by the resource manager which returns an interval.
The RM has conf_percentage confidence that the start time will occur within

this interval.

For example, if conf_percentage = .9, the RM estimates that the start time
will occur within the (estimate - interval_size/2, estimate + interval_ size/2)

with 90
e estimate - the estimated time in which the job will become ACTIVE.

e interval_size - the size of the confidence interval.

e globus gram client_job_start_time returns GLOBUS_.GRAM_CLIENT_SUC-

CESS if it is successful, or an error code.

int globus_gram_client_job_contact_free(

char *job_contact)

This function releases the resources storing the job contact.

e job_contact is the identifier returned with each job request.

int globus_gram_client_callback_allow(

void callback_func(
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void * user_callback\_arg,

char * job_contact,

int state, int errorcode),
void * user_callback_arg,

char **callback_contact)

This function creates a TCP port on which it listens for any response from the
Job Manager. These messages come in the form of GLOBUS_GRAM_CLIENT_SUC-

CESS, or any error message, indicating that the submission has not been successful.

e callback func is a user-defined function with 4 parameters.

e user _callback.arg is any argument the user defines. (a general, all purpose

parameter)
e job_contact is the contact of the specific job in question
e state returns any new job state code
e errorcode holds an error code code if state = FAILED

e user _callback.arg is any argument the user defines, and needs to pass into

the callback func

e callback_contact is the contact for the callback channel

int globus_gram_client_callback_check()

This function needs to be used to receive callbacks if GRAM monitors are not

used.
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8.5 Summary

In this chapter, we present a common interface to supercomputer scheduling sys-
tems. This interface consists of an application programming interface and a language
to describe which resources are needed and how to run an application on those re-
sources. We describe this interface in detail, including the available functions, how

to use the functions, the scheduling model, and the resource specification language.

8.6 Future Work

There are several areas of future work. First, this interface is being extended to
provide an interface to resources other than compute resources. The work in [25]
slightly modifies this resource management interface to request network quality of
service and percentages of other shared resources such as CPUs and disk 1/0 band-
width. Second, this interface is being adopted as a standard in the metacomputing

community and slight modifications may be necessary to support this effort.



Chapter 9

Conclusions

We address several problems in this work related to resource selection and scheduling
in metacomputing systems. We present an information service that provides infor-
mation about resources to users. This allows users to select the most appropriate
resources for their applications. While this service is very useful, all of the informa-
tion needed by users is not currently available. One such piece of information that is
not currently available is when scheduling systems will start applications that have
been submitted to them. This information would allow users to select computing
resources based on when their application would start executing.

We investigate methods for predicting when schedulers will assign resources to
applications. We propose and evaluate a general technique for maintaining a his-
torical database and using this database to predict characteristics of data points.
We use this technique for predicting application execution times and for predicting
queue wait times. When we predict application run times, the applications are de-

scribed by the characteristics that a user provides when they submit an application
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to a parallel scheduler. We predict application run times using the run times of
“similar” applications that have executed in the past. Initially, we do not know
which characteristics to use to define which applications are similar and we do not
know which of several statistical techniques to use to produce a prediction from
similar applications. We search for which characteristics to use to define similar and
how to produce a prediction using both greedy and genetic algorithm searches. We
find that our prediction errors are between 29 and 54 percent of the mean run times
of the four workloads we use to evaluate our technique and are significantly smaller
than the errors of other run-time prediction techniques.

We use two techniques to predict queue wait times. The first technique uses run-
time predictions and performs scheduling simulations of all the running and queued
applications to predict when they will start executing. There are two disadvantages
to this technique. First, exact knowledge of the scheduling algorithm is required and
this knowledge can be difficult to determine about commercial scheduling systems.
Second, this technique does not consider any applications that have not yet been
submitted and with some scheduling algorithms, these applications can affect the
start times of applications that are already in queues. We find that this technique
has a prediction error of between 30 and 59 percent of the mean wait times. The
second technique directly uses our prediction technique based on historical data.
This technique characterizes the state of a scheduler and the application whose wait
time is being predicted, finds similar scheduler/application states that have existed
in the past, and then uses historical information of wait times in these similar states
to produce a wait-time prediction. This technique has a prediction error of between
49 and 94 percent of mean wait times.

In addition to selecting which resources to use, users must be able to schedule
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access to the resources. To assist in this, we helped to define a common interface to
supercomputer scheduling systems. This interface allows a user to start, monitor,
and terminate applications and can be layered atop various scheduling systems or
run on computer systems without schedulers.

Further, many metacomputing applications require simultaneous access to re-
sources and current scheduling systems do not provide this support when resources
are controlled by more than one scheduler. To address this problem, we propose and
evaluate techniques for reserving resources on supercomputers. We examine several
different techniques for this and evaluate their performance based on changes in
mean queue wait times and how near reservations are made to when the users ini-
tially request them. We find that if we cannot restart applications, we are forced to
use maximum run times as predictions when scheduling. In this case, there is a 24
percent increase in wait time when 10 percent of the applications are reservations
and a 144 percent increase in wait time when 20 percent of the applications are
reservations. If we can restart applications, then we can use our run-time predic-
tions when scheduling and the mean wait times decrease by 8 percent for the ANL
workload and the mean difference between the requested reservation times and the
actual reservation times decreases by 124 percent.

As a prelude to our work on techniques for reserving supercomputing resources,
we improve the performance of scheduling algorithms by using more accurate run-
time predictions. Several scheduling algorithms use run-time predictions and typi-
cally use the maximum run-times that are specified by the users. We find that using
our run-time predictions instead of the user-specified maximum run-times decreases
the average wait time by 7 percent and is only 5 percent worse on average than

when actual run times are used as run time predictions.
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Appendix A

Statistical Methods

We use statistical methods [61, 17] to calculate run-time estimates and confidence
intervals from categories. A category contains a set of data points called a sample,
which are a subset of all data points that will be placed in the category, the pop-
ulation. We use a sample to produce an estimate using either a mean or a linear
regression. This estimate includes a confidence interval that is useful as a measure
of the expected accuracy of this prediction. If the X% confidence interval is of size
¢, a new data point will be within ¢ units of the prediction X% of the time. A
smaller confidence interval indicates a more accurate prediction.

A mean is simply the sum of the data points divided by the number of data
points. A confidence interval is computed for a mean by assuming that the data
points in our sample S are an accurate representation of all data points in the
population P of data points that will ever be placed in a category. The sample
is an accurate representation if they are taken randomly from the population and

the sample is large enough. We assume that the sample is random, even though it
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consists of the run times of a series of applications that have completed in the recent
past. If the sample is not large enough, the sample mean T will not be nearly equal
to the population mean p, and the sample standard deviation s will not be near
to the population standard deviation o. The prediction and confidence interval we
compute will not be accurate in this case. In fact, the central limit theorem states
that a sample size of at least 30 is needed for T to approximate p, although the
exact sample size needed is dependent on ¢ and the standard deviation desired for
7 [61].

We used a minimum sample size of 2 when making our predictions in practice.
This is because while a small sample size may result in T not being nearly equal
to p, we find that an estimate from a category that uses many characteristics but
has a small sample is more accurate than an estimate from a category that uses few
characteristics but has a larger sample size.

The X% confidence interval can be computed when using the sample mean as a
predictor by applying Chebychev’s theorem. This theorem states that the portion
of data that lies within k& standard deviations to either side of the mean is at least
1— k% for any data set. We need only compute the sample standard deviation and
k such that 1 — 1%2 = 1%'

Our second technique for producing a prediction is to perform a linear regression

to a sample using the equation
L =by+ bin,

where n is the number of nodes requested and ¢ is the run time. This type of
prediction attempts to use information about the number of nodes requested. A
confidence interval can be constructed by observing how close the data points are

to this line. The confidence interval is computed by the equation
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where N is the sample size, M SFE is the mean squared error of the sample, ng is the

number of nodes requested for the application being predicted, and n is the mean

number of nodes in the sample. Alpha is computed with the equation

if the X% confidence interval is desired and t% is the Student’s t-distribution with

N — 2 degrees of freedom [61, 17].



